首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hydrodynamics of a gas‐solid fluidized bed at elevated temperatures was investigated by analyzing pressure fluctuations in time and frequency domains. Sand particles were fluidized with air at various bed temperatures. At a constant gas velocity, the standard deviation, power spectrum density function, and wide‐band energy of pressure fluctuations reach a maximum at 300 °C. Increasing the temperature to this value causes larger bubble sizes and after the bubbles reach their maximum size, they break into smaller bubbles. The Archimedes number decreases with higher temperature and the type of fluidization becomes closer to that of Geldart A boundary at this maximum temperature. Based on estimation of the drag force acting on the emulsion phase, it was concluded that 300 °C was a transition temperature at which the drag force reaches a minimum due to a significant change of interparticle and hydrodynamic forces.  相似文献   

2.
Solids mixing affects thermal and concentration gradients in fluidized bed reactors and is, therefore, critical to their performance. Despite substantial effort over the past decades, understanding of solids mixing continues to be lacking because of technical limitations of diagnostics in large pilot and commercial‐scale reactors. This study is focused on investigating mixing dynamics and their dependence on operating conditions using computational fluid dynamics simulations. Toward this end, fine‐grid 3D simulations are conducted for the bubbling fluidization of three distinct Geldart B particles (1.15 mm LLDPE, 0.50 mm glass, and 0.29 mm alumina) at superficial gas velocities U/Umf = 2–4 in a pilot‐scale 50 cm diameter bed. The Two‐Fluid Model (TFM) is employed to describe the solids motion efficiently while bubbles are detected and tracked using MS3DATA. Detailed statistics of the flow‐field in and around bubbles are computed and used to describe bubble‐induced solids micromixing: solids upflow driven in the nose and wake regions while downflow along the bubble walls. Further, within these regions, the hydrodynamics are dependent only on particle and bubble characteristics, and relatively independent of the global operating conditions. Based on this finding, a predictive mechanistic, analytical model is developed which integrates bubble‐induced micromixing contributions over their size and spatial distributions to describe the gross solids circulation within the fluidized bed. Finally, it is shown that solids mixing is affected adversely in the presence of gas bypass, or throughflow, particularly in the fluidization of heavier particles. This is because of inefficient gas solids contacting as 30–50% of the superficial gas flow escapes with 2–3× shorter residence time through the bed. This is one of the first large‐scale studies where both the gas (bubble) and solids motion, and their interaction, are investigated in detail and the developed framework is useful for predicting solids mixing in large‐scale reactors as well as for analyzing mixing dynamics in complex reactive particulate systems. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4316–4328, 2017  相似文献   

3.
A phenomenological discrete bubble model has been developed for freely bubbling dense gas–solid fluidized beds and validated for a pseudo‐two‐dimensional fluidized bed. In this model, bubbles are treated as distinct elements and their trajectories are tracked by integrating Newton's equation of motion. The effect of bubble–bubble interactions was taken into account via a modification of the bubble velocity. The emulsion phase velocity was obtained as a superposition of the motion induced by individual bubbles, taking into account bubble–bubble interaction. This novel model predicts the bubble size evolution and the pattern of emulsion phase circulation satisfactorily. Moreover, the effects of the superficial gas velocity, bubble–bubble interactions, initial bubble diameter, and the bed aspect ratio have been carefully investigated. The simulation results indicate that bubble–bubble interactions have profound influence on both the bubble and emulsion phase characteristics. Furthermore, this novel model may become a valuable tool in the design and optimization of fluidized‐bed reactors. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

4.
An experimental study of solids mixing in a freely bubbling two-dimensional bed of 600 to 850 μm glass particles was performed. Vertical and horizontal particle mixing were studied using heated particles as tracers. The steady-state temperature patterns around a heated wire and the transient response to an injected pulse of heated particles were measured. The bubbling behavior of the bed was recorded with a high-speed video camera and an optical bubble probe.Particle motion was found to be closely related to the random bubble motion in the bed. Mixing experiments must, therefore, be repeated numerious times to achieve meaningful results.Vertical particle transport is asymmetrical. Upward displacement is characterized by a mixing length of the order of the bubble diameter, whereas downward displacement is more uniform, and at a much lower velocity level. Horizontal solids mixing is partially due to mixing in the bubble wakes. In a freely bubbling bed, horizontal mixing is considerably augmented by the lateral motion of bubbles.  相似文献   

5.
流化床密相区颗粒扩散系数的CFD数值预测   总被引:4,自引:3,他引:1  
应用离散颗粒模型直观获得颗粒运动情况,并从单个颗粒和气泡作用的角度分析颗粒运动和混合,证实气泡在床层中上升、在床层表面爆破以及气泡上升引起的乳化相下沉运动对颗粒混合起关键作用。应用基于颗粒动理学的双流体模型系统地对床宽分别为0.2、0.4、0.8 m的二维流化床在鼓泡区和湍动区的气固两相流动行为进行数值模拟。受离散颗粒模型启发,在双流体模型计算结果基础上,引入理想示踪粒子技术计算床内平均颗粒扩散系数。计算结果表明,颗粒横向扩散系数(Dx)总体上随流化风速增大而增大,但受床体尺寸影响较大;颗粒轴向扩散系数随流化风速增大而增大,受床体尺寸影响较弱。文献报道的密相区颗粒横向扩散系数分布在10-4~10-1 m2·s-1数量级。本文提出的计算方法在数量级上与文献实验结果吻合,表明在大尺寸流化床且高流化风速下,颗粒横向扩散系数远大于小尺寸鼓泡流化床,为不同研究者实验结果的分歧提供了理论依据,也为预测大型流化床内颗粒扩散速率提供了放大策略。  相似文献   

6.
An important step in the formation of product from feed in a fluidized‐bed coker is the evolution of product and coke from layers of vacuum residue on the surfaces of heated particles and from liquid inside agglomerates of liquid and solid. In the present study, the yield of coke from Athabasca vacuum residue was measured using a reactor based on rapid induction heating of thin films of liquid feed on the surface of pieces of Curie‐point alloy. This approach allowed measurement of the yield of coke at pressures from 101–652 kPa, temperatures of 503 and 530°C, and reaction times from 10 to 240 s. When the liquid was reacted in thin films of ca. 20 µm, the effects of temperature and pressure on coke yield were insignificant. As the film thickness was increased to 120 µm, the yield of coke increased at all conditions. The yield of coke from thicker films was only sensitive to total pressure at 503°C reaction temperature, when the pressure was increased from 377 kPa to 652 kPa. Observable bubbling due to cracking reactions during coking was suppressed by increasing pressure, and the transition from quiescent liquid to bubbling liquid increased from circa 26 µm at 101.3 kPa to 78 µm at 652 kPa at 503°C. The bubbling transition was much less sensitive to pressure at 530°C, falling in the range from 22 µm to 43 µm as pressure increased from 101.3 to 652 kPa. These results suggest that the most important effect of pressure will be on the physical behaviour of liquid feed, due to its impact on bubble evolution from liquid inside agglomerates of liquid and solid particles. Depending on the liquid/solid ratio in an agglomerate, the formation of bubbles inside such a structure would make it weaker and easier to disperse on the fluidized bed reactor.  相似文献   

7.
A series of experiments has been conducted to study mixing and hydrodynamic behaviour of a downward facing sparger in a turbulent fluidized bed reactor. Using pressure measurement techniques, two flow discharge modes were identified around the sparger by injecting a gas tracer into the bed. These are bubbling and jetting conditions. Experimental results show that, under bubbling conditions, bubbles tend to keep their identity, while under jetting conditions a highly turbulent heterogeneous area is formed around the injection point. Due to attrition and erosion of internal heating or cooling surfaces in industrial reactors, the dominant discharge mode is the bubbling pattern. Therefore, in this investigation, the bubbling pattern is studied by measuring the radial and axial dispersion of gas tracer injected to a hot fluidized bed reactor of 20 cm diameter of FCC and sand particles. A three‐phase model is also proposed in order to predict the mixing length. In addition, the effect of sparger configuration on tracer gas mixing was examined for FCC particles.  相似文献   

8.
Experiments involving a bubbling, gas‐fluidized bed with Gaussian and lognormal particle‐size distributions (PSDs) of Geldart Group B particles have been carried out, with a focus on bubble measurements. Previous work in the same systems indicated the degree of axial species segregation varies non‐monotonically with respect to the width of lognormal distributions. Given the widely accepted view of bubbles as “mixing agents,” the initial expectation was that bubble characteristics would be similarly non‐monotonic. Surprisingly, results show that measured bubble parameters (frequency, velocity, and chord length) increase monotonically with increasing width for all PSDs investigated. Closer inspection reveals a bubble‐less bottom region for the segregated systems, despite the bed being fully fluidized. More specifically, results indicate that, the larger the bubble‐less layer is, the more segregated the system becomes. The direct comparison between bubbling and segregation patterns performed provides a more complete physical picture of the link between the two phenomena. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

9.
Flow behavior of bubbles and particles in a bubbling fluidized bed were numerically computed using Euler-Lagrange approach. Particle collision was simulated by means of the direct simulation Monte-Carlo (DSMC) method and hard-sphere model. The computed velocities and fluctuations of particles were in agreement with experimental data of Yuu et al. [S. Yuu, H. Nishikawa, T. Umekage, Numerical simulation of air and particle motions in group-B particle turbulent fluidized bed, Powder Technol. 118 (2001) 32-44]. The distributions of velocity, concentration, granular temperature and collision frequency of particles in a bubbling fluidized bed were analyzed. The wavelet multi-resolution analysis was used to investigate flow behavior of bubbles and particles. The bubble frequency of random-like bubble fluctuation was determined from the wavelet multi-resolution analysis over a time-frequency plane.  相似文献   

10.
This work proposes a novel population-balance based model for a bubbling fluidized bed reactor. This model considers two continuum phases: bubble and emulsion. The evolution of the bubble size distribution was modeled using a population balance, considering both axial and radial motion. This sub-model involves a new mathematical form for the aggregation frequency, which predicts the migration of bubbles from the reactor wall toward the reactor center. Additionally, reacting particles were considered as a Lagrangian phase, which exchanges mass with emulsion phases. For each particle, the variation of the pore size distribution was also considered. The model presented here accurately predicted the experimental data for biochar gasification in a lab-scale bubbling fluidized bed reactor. Finally, the aggregation frequency is shown to serve as a scaling parameter.  相似文献   

11.
Bubbling fluidized beds are often used to achieve a uniform particle temperature distribution in industrial processes involving gas and particles. However, the chaotic bubble dynamics pose significant challenges in scale-up. Recent work (Guo et al., 2021, PNAS 118, e2108647118) has shown that using vibration can structure the bubbling pattern to a highly predictable manner with the characteristic bubble properties independent of system width, opening opportunities to address key issues associated with conventional bubbling fluidized beds. Herein, using two-fluid modeling simulations, we studied heat transfer characteristics within the dynamically structured bubbling fluidized bed and compared to unstructured bubbling fluidized beds and packed beds. Simulations show that the structured bubbling fluidized bed can achieve the most uniform particle temperature distribution because it can achieve the best particle mixing while maintaining a global heat transfer coefficient similar to that of a freely bubbling fluidized bed.  相似文献   

12.
Catalytic fast pyrolysis of cellulose was studied at 500°C using a ZSM‐5 catalyst in a bubbling fluidized bed reactor constructed from a 4.92‐cm ID pipe. Inert gas was fed from below through the distributor plate and from above through a vertical feed tube along with cellulose. Flowing 34% of the total fluidization gas through the feed tube led to the optimal mixing of the pyrolysis vapors into the catalyst bed, which experimentally corresponded to 29.5% carbon aromatic yield. Aromatic yield reached a maximum of 31.6% carbon with increasing gas residence time by changing the catalyst bed height. Increasing the hole‐spacing in the distributor plate was shown to have negligible effect on average bubble diameter and hence did not change the product distribution. Aromatic yields of up to 39.5% carbon were obtained when all studied parameters were optimized. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1320–1335, 2014  相似文献   

13.
This paper presents a novel technique for particle tracking in 2-dimensional fluidized beds operated under ambient conditions. The method is applied to study the mixing mechanisms of fuel particles in fluidized beds and is based on tracking a phosphorescent tracer particle by means of video recording with subsequent digital image analysis. From this, concentration, velocity and dispersion fields of the tracer particle can be obtained with high accuracy. Although the method is restricted to 2-dimensional, it can be applied under flow conditions qualitatively resembling a fluidized-bed combustor. Thus, the experiments cover ranges of bed heights, gas velocities and fuel-to-bed material density and size ratios typical for fluidized-bed combustors. Also, several fluidization regimes (bubbling, turbulent, circulating and pneumatic) are included in the runs.A pattern found in all runs is that the mixing pattern of the tracer (fuel) solids is structured in horizontally aligned vortexes induced by the bubble flow. The main bubble paths always give a low concentration of tracer solids and with the tracer moving upwards, while the downflow of tracer particles in the dense bottom bed is found to take place in zones with low bubble density and at the sidewalls. The amount of bed material (bed height) has a strong influence on the bottom bed dynamics (development and coalescence of bubbles) and, consequently, on the solids mixing process. Local dispersion coefficients reach maximum values around the locations of bubble eruptions, while, in the presence of a dense bottom bed, an increase in fluidization velocity or amount of bed material enhances dispersion. Dispersion is found to be larger in the vertical than in the horizontal direction, confirming the critical character of lateral fuel dispersion in fluidized-bed combustors of large cross section.  相似文献   

14.
The nonequilibrium characteristic of fluidization is closely related to the mesoscale structures. To help uncover this relationship, we performed a particle-level experiment in a bubbling fluidized bed making particle tracking velocimetry (PTV) measurements. We found a large Knudsen number not only in bubbles or over bubble interfaces, but also in the dense emulsion where various banded structures exist, indicating a pervasive violation of the local equilibrium. Analysis of these banded structures identified stretching, compression, or shearing between particles. Non-Gaussian velocity distributions were found throughout the bed, including in the dense emulsion with a small Knudsen number. In future work, we expect that the nonequilibrium characteristic will act as a local criterion for the assessment of various models of bubbling fluidized beds.  相似文献   

15.
This article presents a CFD-DEM study on the effect of particle shape on bubble dynamics in bubbling fluidized beds. The particles used are ellipsoids, covering from disk-type to cylinder-type. The phenomena such as bubble coalescence and splitting are successfully generated, and the results are compared with literature, showing a good agreement. The results demonstrate that the bubble forming/rising regions and patterns are influenced significantly by particle shape. Ellipsoidal particles have asymmetrical bubble patterns with two or more circulation vortices while the bubbles for spherical particles form at the bed centerline and rise through the center of the bed. Hence, the vertical mass flux at the bed centerline for spheres is always positive, and ellipsoids have negative or positive vertical mass fluxes. The solid mixing estimated based on the dispersion coefficient revealed poor mixing for ellipsoids. Spherical particles have a larger bubble size and higher bubble rising velocity than ellipsoids.  相似文献   

16.
The hydrodynamics of a freely bubbling, pseudo 2‐D fluidized bed has been investigated experimentally for different bed aspect ratios at different superficial gas velocities by using Particle Image Velocimetry (PIV) combined with Digital Image Analysis (DIA). Coupling of both non‐invasive measuring techniques allows us to obtain information on both the bubble behaviour and emulsion phase circulation patterns simultaneously. In particular, the combination of DIA with PIV allows to correct for the influence of particle raining through the roof of the bubbles on the time‐averaged emulsion phase velocity profiles.  相似文献   

17.
The rate of interphase mass transfer between the bubble and emulsion phases of a bubbling fluidized bed is of primary importance in all models for fluidized bed reactors. Many experimental studies have been reported, however, all these investigations have been carried out in fluidized beds operated at room temperature. In this work, the effect of the bed temperature on the interphase mass transfer is reported. Single bubbles containing argon – used as a tracer – were injected into an incipiently fluidized bed maintained at the required temperature. The change in argon concentration in the bubble was measured using a suction probe connected to a mass spectrometer. The effects of bed particle type and size, bubble size, and bed temperature on the mass transfer coefficient were examined experimentally. The interphase mass transfer coefficient was found to decrease with the increase in bed temperature and bubble size, and increase slightly with increase in particle size. Experimental data obtained in this study were compared with some frequently used correlations for estimation of the mass transfer coefficient.  相似文献   

18.
Hydrodynamics in a conical fluidized bed were studied using electrical capacitance tomography (ECT) for a bimodal and mono-disperse particle size distribution (PSD) of dry pharmaceutical granule. The bimodal PSD exhibited a continuous distribution with modes at 168 and 1288 μm and contained approximately 46% Geldart A, 32% Geldart B and 22% Geldart D particles by mass. The mono-disperse PSD had a mean particle size of 237 μm and contained approximately 71% Geldart A, 27% Geldart B, and 2% Geldart C particles by mass. The granule particle density was 830 kg/m3. Experiments were conducted at a static bed height of 0.16 m for gas superficial velocities ranging from 0.25 to 2.50 m/s for the mono-disperse PSD, and from 0.50 to 3.00 m/s for the bimodal PSD. These gas velocities covered both the bubbling and turbulent fluidization regimes. An ‘M’-shaped time-averaged radial voidage profile appeared upon transition from bubbling to turbulent fluidization. The ‘M’-shaped voidage profile was characterized by a dense region near the wall of the fluidized bed with decreasing solids concentration towards the centre. An increased solids concentration was observed in the middle of the bed. Frame-by-frame analysis of the images showed two predominant bubble types: spherical bubbles with particle penetration in the nose which created a core of particles that extended into, but not through, the bubble; and spherical bubbles. Penetrated bubbles, responsible for the ‘M’ profile, were a precursor to bubble splitting; which became increasingly prevalent in the turbulent regime.  相似文献   

19.
An integrated flow model was developed to simulate the fluidization hydrodynamics in a new bubble-driven gas–liquid–solid fluidized bed using the computational fluid dynamic (CFD) method. The results showed that axial solids holdup is affected by grid size, bubble diameter, and the interphase drag models used in the simulation. Good agreements with experimental data could be obtained by adopting the following parameters: 5 mm grid, 1.2 mm bubble diameter, the Tomiyama gas–liquid model, the Schiller–Naumann liquid–solid model, and the Gidaspow gas–solid model. At full fluidization state, an internal circulation of particles flowing upward near the wall and downward in the centre is observed, which is in the opposite direction compared with the traditional core-annular flow structure in a gas–solid fluidized bed. The simulated results are very sensitive to bubble diameters. Using smaller bubble diameters would lead to excessive liquid bed expansions and more solid accumulated at the bottom due to a bigger gas–liquid drag force, while bigger bubble diameters would result in a higher solid bed height caused by a smaller gas–solid drag force. Considering the actual bubble distribution, population balance model (PBM) is employed to characterize the coalescence and break up of bubbles. The calculated bubble diameters grow up from 2–4 mm at the bottom to 5–10 mm at the upper section of the bed, which are comparable to those observed in experiments. The simulation results could provide valuable information for the design and optimization of this new type of fluidized system.  相似文献   

20.
This article deals with investigation and modeling of batch drying process of solids in fluidized bed apparatus. There has been used model of fluidized bed drying, which consists two zones: emulsion zone and bubbling zone with taking into consideration the presence of solid particles in the bubbles. The results of theoretical expectations that arise from simulation calculations have been verified with experimental data obtained with the use of fluidized bed dryer 0.225 m in diameter. A drying process of silica gel, sand, and ammonium sulfate has been tested. To verify the model, the concept of a generalized drying curve has also been employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号