首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
The microstructure and surface morphology of ta-C films deposited on p-type (1 0 0) single crystal silicon with the substrate negative bias varying from 0 to 2000 V by the filtered cathodic vacuum arc technology have been investigated by means of Raman spectroscopy and atomic force microscope. The optimal deposition process of sp3-rich ta-C films can be confirmed in light of the relations between the coupling coefficients or full-width at half-maximum and the substrate negative bias. The surfaces of these films are uniform and smooth and RMS surface roughness is less than 0.4 nm. At the lower energetic grades, the more the content of sp3 is in the film, the smoother the surface of the film is. The dependence of the surface morphology and the impinging energy of the species can be illustrated according to the subimplantation growth mechanism. Nevertheless at the high energetic grade, the impinging ions with appropriate energy sputter and smoothen the surface so that the roughness might be even lower than the one of the films with the richest sp3 component.  相似文献   

2.
Hexagonal boron carbonitride (h-BCN) hybrid films have been synthesized on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition using tris-(dimethylamino)borane as a single-source molecular precursor. The films were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopic measurements. XPS measurement showed that the B atoms were bonded to C and N atoms to form the sp2-B-C-N atomic hybrid chemical environment. The atomic composition estimated from the XPS of the typical sample was found to be almost B1C1N1. NEXAFS spectra of the B K-edge and the N K-edge had the peaks due to the π* and σ* resonances of sp2 hybrid orbitals implying the existence of the sp2 hybrid configurations of h-BCN around the B atoms. The G band at 1592 and D band at 1352 cm− 1 in the Raman spectra also suggested the presence of the graphite-like sp2-B-C-N atomic hybrid bonds. The films consisted of micrometer scale crystalline structure of around 10 µm thick has been confirmed by the field emission scanning electron microscopy.  相似文献   

3.
Orientation of sp2-bonded boron carbonitride (BCN) hybrid films has been investigated. The films were synthesized on Ni (111) and polycrystalline Ti substrates by radio frequency plasma enhanced chemical vapor deposition using tris-dimethylamino borane as a single-source molecular precursor. The deposition was performed at the radiofrequency power 400-800 W at the working pressure 2.6 Pa. Formation of sp2-BCN hybrids in the samples was confirmed by X-ray diffraction (XRD). In the XRD profile, the peak at 26.3° revealed formation of crystalline phase in the samples in which the lattice planes are separated from each other by around 3.5 Å. The D band at ~ 1350 cm− 1 and the G band at ~ 1570 cm− 1 in Raman spectra also suggested presence of graphite-like sp2-B-C-N hybrid bonds. The films were composed of different B-N, B-C, and C-N bonds to form sp2-BCN atomic hybrids confirmed by X-ray photoelectron spectra. Orientation and local structures of the films were studied by near-edge X-ray absorption fine structure (NEXAFS) measurements. The dominant presence of π* and σ* resonance peaks of the sp2 hybrid orbitals in B K-edge NEXAFS spectra revealed preferred formation of sp2-BCN atomic hybrids around B atoms like-BN3 configuration in respect to the plane of Ni (111) substrate. Different orientations were suggested on the basis of polarization dependence of B K-edge and N K-edge of the NEXAFS spectra.  相似文献   

4.
Multilayer lithium tantalate thin films were deposited on Pt-Si [Si(111)/SiO2/TiO2/Pt(111)] substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 °C) for 15 min. The films are polycrystalline at 650 °C and at other annealing conditions below 650 °C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 °C. These polycrystalline films exhibit spontaneous polarization of 1.5 μC/cm2 at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal.  相似文献   

5.
The epitaxial growth of ZnO thin films on Al2O3 (0001) substrates have been achieved at a low-substrate temperature of 150 °C using a dc reactive sputtering technique. The structures and crystallographic orientations of ZnO films varying thicknesses on sapphire (0001) were investigated using X-ray diffraction (XRD). We used angle-dependent X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy to examine the variation of local structure. The XRD data showed that the crystallinity of the film is improved as the film thickness increases and the strain is fully released as the film thickness reached about 800 Å. The Zn K-edge XANES spectra of the ZnO films have a strong angle-dependent spectral feature resulting from the preferred c-axis orientation. The wurtzite structure of the ZnO films was explicitly shown by the XRD and EXAFS analysis. The carrier concentration, Hall mobility and resistivity of the 800 Å-thick ZnO film were 1.84 × 1019 cm− 3, 24.62 cm2V− 1s− 1, and 1.38 × 10− 2 Ω cm, respectively.  相似文献   

6.
使用磁过滤阴极真空电弧(FCVA)技术制备不同厚度的超薄四面体非晶碳膜(ta-C),研究了表征和测量超薄ta-C碳膜微观结构和性能的方法以及膜厚的影响。使用X射线衍射仪验证椭圆偏振光谱仪联用分光光度计表征膜厚度的可靠性并测量了膜密度;用拉曼谱分析薄膜的内在结构,验证用椭偏联用分光光度计表征sp3 C含量的可靠性;用Stoneys公式计算了薄膜的残余应力。结果表明,薄膜的厚度由7.6 nm增大到33.0 nm其沉积速率变化不大,为1.7±0.1 nm/min;根据椭偏联用分光光度计的表征结果,薄膜中sp3 C的含量逐渐减少,拓扑无序度降低,与拉曼谱的表征结果一致;厚度为7.6 nm的超薄ta-C碳膜中p3 C的含量最高;随着厚度的增大薄膜中的残余压应力从14 GPa降低到5 GPa;厚度为11.0 nm的薄膜主体层密度最大,为3070 kg/m3,致密性较好;厚度对薄ta-C碳膜表面粗糙度的影响较小。用椭偏和分光光度计测量超薄ta-C碳膜的厚度和表征显微结构是可行的,X射线反射法可用于测量超薄ta-C碳膜密度和表面粗糙度,但是对薄膜的质量要求较高。  相似文献   

7.
K. Khojier 《Vacuum》2010,84(6):770-777
Ti films of different thickness ranging from 12.3 to 246.2 nm were deposited, using resistive heat method and post-annealed at different temperatures with a flow of 5 cm3 s−1 oxygen. The nano-structures of the films were obtained using X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed an initial reduction of the grain size at 373 K annealing temperature and increase of the grain size at higher temperatures. The cause of this was due to the reaction of oxygen with Ti atoms which breaks up the Ti grains and hence needle-like features form. The enhancement of activation processes at higher temperatures results in larger grains. The analysis of XRD in conjunction with AFM images showed that those films containing (004) line of anatase phase and sub-oxide phases of titanium oxide also show two types of grains in the AFM images. The resistivity of the film increased with annealing temperature, which is due to competition between increased diffusion rate and the increased reaction rate of oxygen with Ti atoms. The Hall coefficient RH and the mobility μ decreased with increasing film thickness at all annealing temperatures, while RH increases and μ decreases with increasing the annealing temperature. The carrier concentration increased with film thickness and decreased with annealing temperature. The impedance spectroscopy showed that all films have a pure RC behaviour, where the magnitude of R depends on the annealing temperature and film thickness. The apparent activation energies Ea, obtained from three different methods, namely σ, RH and grain size showed good agreement within 0.30-0.46 eV for the range of film thickness examined in this work. It was found that films with thickness less than 70 nm can be recognized as Ti-oxide films while thicker films are only surface-oxidised Ti films.  相似文献   

8.
We evaporated polycrystalline copper thin films of thickness between 10 and 100 nm on silicon substrates with their native oxide under ultra-high-vacuum conditions. Some of them were exposed to air for a period ranging from 1 day to 2 weeks. X-ray photoelectron spectroscopy (XPS) revealed a clean copper surface with a trace of oxygen. These films that were exposed to air presented oxides in the state Cu(II), the amount of CuO depended on the time that the film was exposed to air. Subsequently, we deposited TiO ultra-thin films on polycrystalline copper substrates. Both these thin films were formed by electron beam evaporation. XPS spectra showed that the surface of the titanium monoxide (TiO) films was contamination-free. An evaporation of 0.3 nm of TiO reduced the native oxide of the copper substrates from Cu(II) to Cu(I) or Cu(0) and transformed the TiO into TiO2 at the interface. Low-energy ion spectroscopy showed that the complete coverage of the substrates depends on the thickness of the copper films. For 10 nm copper thin films the complete coverage occurred at 1.5 nm of TiO, and for 100 nm it occurred at 2.0 nm of TiO. In samples exposed to air, the complete coverage occurred at a film thickness slightly higher than those treated under ultra-high-vacuum conditions.  相似文献   

9.
Ultrathin films of MgO (~ 6 nm) were deposited on Si(100) using dual ion beam sputtering in different partial pressures of oxygen. These thin films were characterized by X-ray photoelectron spectroscopy (XPS) for chemical state analysis and conducting atomic force microscopy for topography and local conductivity map. No trace of metal Mg was evidenced in these MgO films. The XPS analysis clearly brought out the formation of oxygen interstitials and Mg(OH)2 primarily due to the presence of residual water vapors in the chamber. An optimum value of oxygen partial pressure of ~ 4.4 × 10− 2 Pa is identified with regard to homogeneity of film and stoichiometry across the film thickness (O:Mg::0.93-0.97). The local conductivity mapping investigations also established the film homogeneity in respect of electrical resistivity. Non-linear local current-voltage curves revealed typical tunneling characteristics with barrier width of ~ 5.6 nm and barrier height of ~ 0.92 eV.  相似文献   

10.
Boron incorporated amorphous carbon (a-C:B) films were deposited by a filtered cathodic vacuum arc system using various percentage of boron mixed graphite cathodes. X-ray photoelectron spectroscopy (XPS) was employed to determine the properties of the films as a function of boron concentration. Deconvolutions of the XPS C 1s core level spectra were carried out using four different components. The relative fraction of sp3 bonding was then evaluated from the area ratio of the peaks at 285.0, 284.1 eV which were individually attributed to sp3 C-C, sp2 CC hybridizations. The results showed that the sp3 content of a-C:B film decreases from 73.8 to 58.6% for the films containing boron from 0.59 to 2.13 at.%, and then gradually reduced to 42.5% at a slower rate with boron concentration up to 6.04 at.%. Furthermore, a series of a-C:B films with fixed boron content (2.13 at.%) were prepared to identify the relationship between sp3 bonding and substrate bias. It was found that the fraction of sp3 bonding increased from 50.28% at the bias voltage of 0 V and reached a maximum value of 66.3% at −150 V. As the bias voltage increased up to −2000 V, the sp3 content decreased sharply to 43.9%.  相似文献   

11.
Nanocrystalline zinc oxide thin films were deposited on glass and silicon substrates by using pulsed laser deposition at different laser energy densities (1.5, 2, and 3 J/cm2). The film thickness, surface roughness, composition, optical and structural properties of the deposited films were studied using an α-step surface profilometer, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), optical transmittance, and X-ray diffraction (XRD), respectively. The film thickness was calculated as 244 nm. AFM analysis shows that the root-mean-square roughness increases with increasing laser energy density. XPS analysis shows that the interaction of zinc with oxygen atoms is greatly increased at high laser energy density. In the optical transmittance spectra, a shift of the absorption edge towards higher wavelength region confirms that the optical band gap increases with an increase in laser energy density. The particle size of the deposited films was measured by XRD, it is found to be in the range from 7.87 to 11.81 nm. It reveals that the particle size increases with an increase in laser energy density.  相似文献   

12.
Diamond-like carbon (DLC) films were deposited by a cathodic arc plasma evaporation (CAPD) process, using a mechanical shield filter combined with a magnetic filter with enhanced arc structure at substrate-bias voltage ranging from − 50 to − 300 V. The film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). The mechanical properties were investigated by using a nanoindentation tester, scratch test and ball on disc wear test. The Raman spectra of the films showed that the wavenumber ranging from 900 to 1800 cm− 1 could be deconvoluted into 1140 cm− 1, D band and G band. The bias caused a significant effect on the sp3 content which was increased with the decreasing of ID/IG ratio. The XPS spectra data of the films which were etched by H+ plasma indicated the sp3 content are higher than those of the as-deposited DLC films. This implied that there is a sp2-rich layer present on the surface of the as-deposited DLC films. The nanoindentation hardness increased as the maximum load increased. A 380 nm thick and well adhered DLC film was successfully deposited on WC-Co substrate above a Ti interlayer. The adhesion critical load of the DLC films was about 33 N. The results of the wear tests demonstrated that the friction coefficient of the DLC films was between 0.12 and 0.2.  相似文献   

13.
Pure tungsten oxide (WO3) and iron-doped (10 at.%) tungsten oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation (EBE) technique. The films were deposited at room temperature under high vacuum onto glass as well as alumina substrates and post-heat treated at 300 °C for 1 h. Using Raman spectroscopy the as-deposited WO3 and WO3:Fe films were found to be amorphous, however their crystallinity increased after annealing. The estimated surface roughness of the films was similar (of the order of 3 nm) to that determined using Atomic Force Microscopy (AFM). As observed by AFM, the WO3:Fe film appeared to have a more compact surface as compared to the more porous WO3 film. X-ray photoelectron spectroscopy analysis showed that the elemental stoichiometry of the tungsten oxide films was consistent with WO3. A slight difference in optical band gap energies was found between the as-deposited WO3 (3.22 eV) and WO3:Fe (3.12 eV) films. The differences in the band gap energies of the annealed films were significantly higher, having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films respectively. The heat treated films were investigated for gas sensing applications using noise spectroscopy. It was found that doping of Fe to WO3 produced gas selectivity but a reduced gas sensitivity as compared to the WO3 sensor.  相似文献   

14.
Synthesis of thermally evaporated ZnSe thin film at room temperature   总被引:1,自引:0,他引:1  
Zinc selenide (ZnSe) thin film on glass substrates were prepared by thermal evaporation under high vacuum using the quasi-closed volume technique at room temperature (300 ± 2 K). The deposited ZnSe properties were assessed via X-ray diffraction, atomic force microscope (AFM), UV-Vis specrophotometry, Raman spectroscopy, photo-luminescence, Fourier transform infrared spectroscopy (FT-IR) and spectroscopic ellipsometry. The X-ray diffraction patterns of the film exhibited reflection corresponding to the cubic (111) phase (2θ = 27.20°). This analysis indicated that the sample is polycrystalline and have cubic (Zinc blende) structure. The crystallites were preferentially oriented with the (111) planes parallel to the substrates. The AFM images showed that the ZnSe films have smooth morphology with roughness 6.74 nm. The transmittance spectrum revealed a high transmission of 89% in the infrared region (≥ 600 nm) and a low transmission of 40% at 450 nm. The maximum transmission of 89.6% was observed at 640 nm. Optical band-gap was calculated from the transmission data of specrophotometry, photo-luminescence and ellipsometry and was 2.76, 2.74 and 2.82 eV respectively. Raman spectroscopic studies revealed two longitudinal optical phonon modes at 252 cm -1 and 500 cm -1. In photoluminescence study, the luminescence peaks was observed at 452 nm corresponding to band to band emission. FT-IR study illustrated the existence of Zn-Se bonding in ZnSe thin film. The optical constants were calculated using spectroscopic ellipsometry and were determined from the best fit ellipsometric data in the wavelength regime of interest from 370-1000 nm. These results manifested excellent room temperature ZnSe synthesis and characteristics for opto-electronics technologies.  相似文献   

15.
Al-doped transparent conducting zinc oxide (AZO) films, approximately 20-110 nm-thick, were deposited on glass substrates at substrate temperatures between 200 and 300 °C by pulsed laser deposition (PLD) using an ArF excimer laser (λ = 193 nm). When fabricated at a substrate temperature of 260 °C, a 40-nm-thick AZO film showed a low resistivity of 2.61 × 10− 4 Ω·cm, carrier concentration of 8.64 × 1020 cm− 3, and Hall mobility of 27.7 cm2/V·s. Furthermore, for an ultrathin 20-nm-thick film, a resistivity of 3.91 × 10− 4 Ω·cm, carrier concentration of 7.14 × 1020 cm− 3, and Hall mobility of 22.4 cm2/V·s were obtained. X-ray diffraction (XRD) spectra, obtained by the θ-2θ method, of the AZO films grown at a substrate temperature of 260 °C showed that the diffraction peak of the ZnO (0002) plane increased as the film thickness increased from 20 to 110 nm. The full-width-at-half-maximum (FWHM) values were 0.5500°, 0.3845°, and 0.2979° for film thicknesses of 20, 40, and 110 nm, respectively. For these films, the values of the average transmittance in visible light wavelengths (400-700 nm) were 95.1%, 94.2%, and 96.6%, respectively. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations showed that even the 20-nm-thick films did not show island structures. In addition, exfoliated areas or vacant and void spaces were not observed for any of the films.  相似文献   

16.
A study on the NO2 gas sorption ability of amorphous Ge33Se67 coated quartz crystal microbalance (QCM) is presented. The thin films have been characterized before and after sorption/desorption processes of NO2 by energy-dispersive X-ray spectroscopy (EDS), grazing angle X-ray diffraction (GAXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and atom force microscopy (AFM) measurements. These studies indicated that physisorption occurs when NO2 gas molecules are introduced into the chalcogenide film and the thin film composition or structure do not change. The mass loading due to NO2 gas sorption was calculated by the resonator’s frequency shift. At the conditions of our experiment, up to 6.8 ng of the gas was sorbed into 200 nm thick Ge33Se67 film at 5000 ppm NO2 concentration. It has been established that the process of gas molecules sorption is reversible.  相似文献   

17.
SiCN thin films were prepared by high-dosage (2 × 1017 cm− 2) C+ ion implantation into α-SiNx:H films. The prepared films were then processed by thermal annealing for 2 h at 800 °C, 1000 °C and 1200 °C respectively. The composition and bond structure of SiCN were analyzed by X-ray photoemission spectroscopy, Auger electron spectroscopy, Raman spectroscopy and X-ray diffraction, and photoluminescence. Ternary structure with N bridging C and Si of the film annealed at 800 °C was found. The luminescent properties of SiCN have also been studied by synchrotron radiation at 20 K. Four emission bands were observed, corresponding to 2.95, 2.58, 2.29 and 2.12 eV at 20 K, respectively. In this paper, we report the experimental results and try to explain them.  相似文献   

18.
The consumption of the surface native oxides is studied during the atomic layer deposition of TiO2 films on GaAs (100) surfaces. Films are deposited at 200 °C from tetrakis dimethyl amido titanium and H2O. Transmission electron microscopy data show that the starting surface consists of ~2.6 nm of native oxide and X-ray photoelectron spectroscopy indicates a gradual reduction in the thickness of the oxide layer as the thickness of the TiO2 film increases. Approximately 0.1-0.2 nm of arsenic and gallium suboxide is detected at the interface after 250 process cycles. For depositions on etched GaAs surfaces no interfacial oxidation is observed.  相似文献   

19.
Zinc phthalocyanine (ZnPc), C32H16N8Zn, is a planar organic molecule having numerous optical and electrical applications in organic electronics. This work investigates the influence of various deposition parameters on the morphology of vapour thermal evaporated ZnPc films. For this purpose, ZnPc is deposited at different substrate temperatures up to 90 °C and film thickness up to 50 nm onto various substrates. The morphology of this ZnPc layers is characterised by X-ray diffraction (XRD), X-ray reflectivity (XRR) and atomic force microscopy (AFM) methods. XRD measurements show that all ZnPc films are crystalline in a triclinic (α-ZnPc) or monoclinic (γ-ZnPc) phase, independent from the kind of substrate, layer thickness, or substrate temperature. The ZnPc powder, the starting product for the thermally evaporated ZnPc films, is present in the stable monoclinic β-phase. Thus, the stacking of the ZnPc molecules changes completely during deposition. The crystallite size perpendicular to the substrate determined by XRD microstructure analysis is in the range of the layer thickness while the lateral size, obtained by AFM, is increasing with substrate temperature and film thickness. AFM and XRR show an increase of the layer roughness for thicker ZnPc layers and higher substrate temperatures during film deposition. The strain in the ZnPc films decreases for higher substrate temperatures due to enhanced thermal relaxation and for thicker ZnPc films due to lower surface tension.  相似文献   

20.
Different types of diamond-like carbon (DLC) films (ta-C, a-C, ta-C:H and a-C:H) were prepared on super hard alloy (WC-Co) substrate using a T-shape filtered arc deposition (T-FAD) system. At first, the film properties, such as structure, hydrogen content, density, hardness, elastic modulus, were measured. Ta-C prepared with a DC bias of −100 V showed the highest density (3.1 g/cm3) and hardness (70-80 GPa), and the lowest hydrogen content (less than 0.1 at. %). It was found that the hardness of the DLC film is proportional to approximately the third power of film density. The DLC films were then heated for 60 min in an electric furnace at 550 °C in N2. Only the ta-C film hardly change its structure, although other films were graphitized. The 200-nm thick ta-C film was then heated for 60 min through the temperature range from 400 to 800 °C in N2 with 2 vol.% of O2 and the film structure found to be stable up to 700 °C. The substrate was oxidized at 800 °C, indicating the ta-C film had a thermal barrier function up to that temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号