首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recently, several numerical methods have been proposed for pricing options under jump-diffusion models but very few studies have been conducted using meshless methods [R. Chan and S. Hubbert, A numerical study of radial basis function based methods for options pricing under the one dimension jump-diffusion model, Tech. Rep., 2010; A. Saib, D. Tangman, and M. Bhuruth, A new radial basis functions method for pricing American options under Merton's jump-diffusion model, Int. J. Comput. Math. 89 (2012), pp. 1164–1185]. Indeed, only a strong form of meshless methods have been employed in these lectures. We propose the local weak form meshless methods for option pricing under Merton and Kou jump-diffusion models. Predominantly in this work we will focus on meshless local Petrov–Galerkin, local boundary integral equation methods based on moving least square approximation and local radial point interpolation based on Wendland's compactly supported radial basis functions. The key feature of this paper is applying a Richardson extrapolation technique on American option which is a free boundary problem to obtain a fixed boundary problem. Also the implicit–explicit time stepping scheme is employed for the time derivative which allows us to obtain a spars and banded linear system of equations. Numerical experiments are presented showing that the presented approaches are extremely accurate and fast.  相似文献   

2.
We develop a hybrid implicit and explicit adaptive multirate time integration method to solve systems of time-dependent equations that present two significantly different scales. We adopt an iteration scheme to decouple the equations with different time scales. At each iteration, we use an implicit Galerkin method with a fast time-step to solve for the fast scale variables and an explicit method with a slow time-step to solve for the slow variables. We derive an error estimator using a posteriori analysis which controls both the iteration number and the adaptive time-step selection. We present several numerical examples demonstrating the efficiency of our scheme and conclude with a stability analysis for a model problem.  相似文献   

3.
The thermal coupling of a fluid and a structure is of great significance for many industrial processes. As a model for cooling processes in heat treatment of steel we consider the surface coupling of the compressible Navier-Stokes equations bordering at one part of the surface with the heat equation in a solid region. The semi-discrete coupled system is solved using stiffly stable SDIRK methods of higher order, where on each stage a fluid-structure-coupling problem is solved. For the resulting method it is shown by numerical experiments that a second order convergence rate is obtained. This property is further used to implement a simple time-step control, which saves considerable computational time and, at the same time, guarantees a specified maximum error of time integration.  相似文献   

4.
《国际计算机数学杂志》2012,89(9):1157-1165
A finite-difference scheme often employed for the valuation of options from the Black–Scholes equation is the Crank–Nicolson (CN) scheme. The CN scheme is second order in both time and asset. For a rapid valuation with a reasonable resolution of the option price curve, it requires extremely small steps in both time and asset. In this paper, we present high-accuracy finite-difference methods for the Black–Scholes equation in which we employ the fourth-order L-stable Simpson-type (LSIMP) time integration schemes developed earlier and the well-known Numerov method for discretization in the asset direction. The resulting schemes, called LSIMP–NUM, are fourth order in both time and asset. The LSIMP–NUM schemes obtained can provide a rapid, stable and accurate resolution of option prices, allowing for relatively large steps in both time and asset. We compare the computational efficiency of the LSIMP–NUM schemes with the CN and Douglas schemes by considering valuation of European options and American options via the linear complementarity approach.  相似文献   

5.
In this paper, we present three new schemes for the coupled nonlinear Schrödinger equation. The three new schemes are multi-symplectic schemes that preserve the intrinsic geometry property of the equation. The three new schemes are also semi-explicit in the sense that they need not solve linear algebraic equations every time-step, which is usually the most expensive in numerical simulation of partial differential equations. Many numerical experiments on collisions of solitons are presented to show the efficiency of the new multi-symplectic schemes.  相似文献   

6.
L.K. Lundin 《Parallel Computing》1998,24(14):2021-2034
To compute the time-dependent flow of a rotating incompressible fluid we consider the velocity–vorticity formulation of the Navier–Stokes equations in cylindrical coordinates. In the numerical method employed the velocity field at each time-step is found as the least squares solution of an overdetermined system of linear equations, Ax=b. We consider how to compute x using the preconditioned conjugate gradient algorithm for least squares (PCGLS) on a distributed parallel computer. The various aspects of using a parallel computer are discussed, and results for a wide range of parallel computers are presented. The parallel speed-up depends on the architecture but is typically about 80% of the number of processors used.  相似文献   

7.
We present a new radial-basis-function (RBF)-based numerical method for pricing European and American option problems. The governing equation is time semi-discretized by a linear-implicit backward difference method. The spatial discretization is done by using the RBF-based finite difference method. The numerical scheme first derived for an European option is extended for American options by using an operator splitting method. Numerical experiments with multiquadric RBF for one- and two-asset option problems are carried out, and the results obtained are compared with the existing ones.  相似文献   

8.
In this paper, we consider the partial integro-differential equation arising when a stock follows a Poisson distributed jump process, for the pricing of Asian options. We make use of the meshless radial basis functions with differential quadrature for approximating the spatial derivatives and demonstrate that the algorithm performs effectively well as compared to the commonly employed finite difference approximations. We also employ Strang splitting with the exponential time integration technique to improve temporal efficiency. Throughout the numerical experiments covered in the paper, we show how the proposed scheme can be efficiently employed for the pricing of American style Asian options under both the Black–Scholes and the Merton jump-diffusion models.  相似文献   

9.
《国际计算机数学杂志》2012,89(9):1212-1238
In this paper, we present a highly efficient approach for numerically solving the Black–Scholes equation in order to price European and American basket options. Therefore, hardware features of contemporary high performance computer architectures such as non-uniform memory access and hardware-threading are exploited by a hybrid parallelization using MPI and OpenMP which is able to drastically reduce the computing time. In this way, we achieve very good speed-ups and are able to price baskets with up to six underlyings. Our approach is based on a sparse grid discretization with finite elements and makes use of a sophisticated adaption. The resulting linear system is solved by a conjugate gradient method that uses a parallel operator for applying the system matrix implicitly. Since we exploit all levels of the operator's parallelism, we are able to benefit from the compute power of more than 100 cores. Several numerical examples as well as an analysis of the performance for different computer architectures are provided.  相似文献   

10.
The adaptive Rothe method approaches a time-dependent PDE as an ODE in function space. This ODE is solved virtually using an adaptive state-of-the-art integrator. The actual realization of each time-step requires the numerical solution of an elliptic boundary value problem, thus perturbing the virtual function space method. The admissible size of that perturbation can be computed a priori and is prescribed as a tolerance to an adaptive multilevel finite element code, which provides each time-step with an individually adapted spatial mesh. In this way, the method avoids the well-known difficulties of the method of lines in higher space dimensions. During the last few years the adaptive Rothe method has been applied successfully to various problems with infinite speed of propagation of information. The present study concerns the adaptive Rothe method for hyperbolic equations in the model situation of the wave equation. All steps of the construction are given in detail and a numerical example (diffraction at a corner) is provided for the 2D wave equation. This example clearly indicates that the adaptive Rothe method is appropriate for problems which can generally benefit from mesh adaptation. This should be even more pronounced in the 3D case because of the strong Huygens' principle. Accepted: 12 August 1997  相似文献   

11.
The Discontinuous Galerkin (DG) method provides a powerful tool for approximating hyperbolic problems. Here we derive a new space-time DG method for linear time dependent hyperbolic problems written as a symmetric system (including the wave equation and Maxwell’s equations). The main features of the scheme are that it can handle inhomogeneous media, and can be time-stepped by solving a sequence of small linear systems resulting from applying the method on small collections of space-time elements. We show that the method is stable provided the space-time grid is appropriately constructed (this corresponds to the usual time-step restriction for explicit methods, but applied locally) and give an error analysis of the scheme. We also provide some simple numerical tests of the algorithm applied to the wave equation in two space dimensions (plus time).This revised version was published online in July 2005 with corrected volume and issue numbers.  相似文献   

12.
This paper proposes an approach to the approximation of time-dependent hyperbolic conservation laws which is both second order accurate in space and time (for any sufficiently smooth solution profile, even one containing turning points) and free of spurious oscillations for any time-step. The numerical algorithm is based on the concept of fluctuation distribution, applied on a space-time mesh of triangular prisms, for which second order accurate schemes already exist which are oscillation-free if the time-step satisfies a CFL-type constraint. This restriction is lifted here by combining the concept of a two-layer scheme with a representation of the solution which is allowed to be discontinuous-in-time. Numerical results are presented in two space dimensions, using unstructured meshes of space-time triangular prisms, for the scalar advection equation, Burgers’ equation and the Euler equations of gas dynamics.  相似文献   

13.
《国际计算机数学杂志》2012,89(9):1145-1163
This paper deals with the efficient valuation of American options. We adopt Heston's approach for a model of stochastic volatility, leading to a generalized Black–Scholes equation called Heston's equation. Together with appropriate boundary conditions, this can be formulated as a parabolic boundary value problem with a free boundary, the optimal exercise price of the option. For its efficient numerical solution, we employ, among other multiscale methods, a monotone multigrid method based on linear finite elements in space and display corresponding numerical experiments.  相似文献   

14.
Computational Fluid Dynamics (CFD) methods for solving traffic flow continuum models have been studied and efficiently implemented in traffic simulation codes in the past. This is the first time that such methods are studied from the point of view of parallel computing. We studied and implemented an implicit numerical method for solving the high-order flow conservation traffic model on parallel computers. Implicit methods allow much larger time-step than explicit methods, for the same accuracy. However, at each time-step a nonlinear system must be solved. We used the Newton method coupled with a linear iterative method (Orthomin). We accelerated the convergence of Orthomin with parallel incomplete LU factorization preconditionings. We ran simulation tests with real traffic data from an 12-mile freeway section (in Minnesota) on the nCUBE2 parallel computer. These tests gave the same accuracy as past tests, which were performed on one-processor computers, and the overall execution time was significantly reduced.  相似文献   

15.
《国际计算机数学杂志》2012,89(9):1164-1185
A new radial basis functions (RBFs) algorithm for pricing financial options under Merton's jump-diffusion model is described. The method is based on a differential quadrature approach, that allows the implementation of the boundary conditions in an efficient way. The semi-discrete equations obtained after approximation of the spatial derivatives, using RBFs based on differential quadrature are solved, using an exponential time integration scheme and we provide several numerical tests which show the superiority of this method over the popular Crank–Nicolson method. Various numerical results for the pricing of European, American and barrier options are given to illustrate the efficiency and accuracy of this new algorithm. We also show that the option Greeks such as the Delta and Gamma sensitivity measures are efficiently computed to high accuracy.  相似文献   

16.
《国际计算机数学杂志》2012,89(13):2782-2797
Due to transaction costs, illiquid markets, large investors or risks from an unprotected portfolio the assumptions in the classical Black–Scholes model become unrealistic and the model results in nonlinear, possibly degenerate, parabolic diffusion–convection equations. Since in general, a closed-form solution to the nonlinear Black–Scholes equation for American options does not exist (even in the linear case), these problems have to be solved numerically. We present from the literature different compact finite difference schemes to solve nonlinear Black–Scholes equations for American options with a nonlinear volatility function. As compact schemes cannot be directly applied to American type options, we use a fixed domain transformation proposed by ?ev?ovi? and show how the accuracy of the method can be increased to order four in space and time.  相似文献   

17.
We develop a numerical approximation for a hydrodynamic phase field model of three immiscible, incompressible viscous fluid phases. The model is derived from a generalized Onsager principle following an energetic variational formulation and is consisted of the momentum transport equation and coupled phase transport equations. It conserves the volume of each phase and warrants the total energy dissipation in time. Its numerical approximation is given by a set of easy-to-implement, semi-discrete, linear, decoupled elliptic equations at each time step, which can be solved efficiently using fast solvers. We prove that the scheme is energy stable. Mesh refinement tests and three numerical examples of three-phase viscous fluid flows in 3D are presented to benchmark the effectiveness of the model as well as the efficiency of the numerical scheme.  相似文献   

18.
This paper concerns an adaptive finite element method for the Stefan one-phase problem. We derive a parabolic variational inequality using the Duvaut transformation. In each time-step we consider an adaptive algorithm based on a combination of the Uzawa method associated with the corresponding multivalued operator and a convergent adaptive method for the linear problem. We justify the convergence of the method. As an application we model an endoglacial conduit in which a phase change phenomenon takes place.  相似文献   

19.
《国际计算机数学杂志》2012,89(8):1730-1748
Under a jump-diffusion process, the option pricing function satisfies a partial integro-differential equation. A fourth-order compact scheme is used to discretize the spatial variable of this equation. The boundary value method is then utilized for temporal integration because of its unconditional stability and high-order accuracy. Two approaches, the local mesh refinement and the start-up procedure with refined step size, are raised to avoid the numerical malfunction brought by the nonsmooth payoff function. The GMRES method with a preconditioner which comes from the Crank–Nicolson formula is employed to solve the resulting large-scale linear system. Numerical experiments demonstrate the efficiency of the proposed method when pricing European and double barrier call options in the jump-diffusion model.  相似文献   

20.
ABSTRACT

In this work, we propose a numerical technique to compute the total value adjustment for the pricing of American options when considering counterparty risk. Several linear and nonlinear mathematical models, associated to different choices of the mark-to-market value at default, are deduced and numerically solved, thus leading to approximations of the option price with counterparty risk. The methodology is based on Monte Carlo simulations combined with a dynamic programming strategy. At each time step, an optimal stopping criterion is applied and the decision on either exercising or not the option is taken. We present some numerical tests to illustrate the behaviour of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号