首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钛合金是一种典型的难切削材料,加工过程中摩擦力大、温度高、刀具磨损严重,导致其切削成本较高。超声振动切削可以减少切削力、提高加工质量。将椭圆超声振动切削技术用于近α型高温钛合金BTi6431S的车削过程中,对切屑形貌、切削力和刀具磨损进行了实验研究。结果表明:椭圆超声振动的切屑长度变短,缠绕程度变大,微观形貌显示在较低的切削速度下其锯齿化程度低于传统切削。椭圆超声振动的切削力明显小于传统切削,随着切削速度的增加,其切削力逐渐接近传统切削时的切削力。椭圆超声振动在切削速度较低时可以有效提高刀具寿命,随着切削速度的增加,刀具磨损加剧。  相似文献   

2.
在GH4169镍基高温合金加工过程中,会产生严重的加工硬化现象以及因切削力过大等原因导致的难加工问题。利用ABAQUS软件建立二维正交车削有限元模型,分析GH4169超声椭圆振动车削的切削速度和振幅对切削力的影响,以及其刀具轨迹的变化情况,并与普通车削过程进行了对比分析。结果表明,在超声椭圆振动车削镍基高温合金中,切削工艺参数对切削力影响显著,选择合理的工艺参数可以有效地降低切削力,改善加工质量。  相似文献   

3.
硬铝合金超精密车削残余应力的仿真及试验   总被引:2,自引:0,他引:2  
为满足超精密车削加工零件低表面应力的使用性能要求,采用有限元和试验相结合的方法,对硬铝合金进行微米级的超精密车削仿真和试验.分析切削过程的切削力和切削温度,研究已加工表面残余应力产生的原因及残余应力的性质,得到切削深度和切削速度对已加工表面残余应力的影响规律.仿真结果表明:金刚石刀具车削硬铝合金,切削温度低,切削力小,但是单位切削力大.切削力是已加工表面形成残余压应力的主导因素.表层残余应力随着切削深度的增加而变大,随着切削速度的增大反而有减小的趋势.在微米级硬铝合金的超精密切削过程中,切削深度对已加工表面残余应力的影响更为显著.进行微米级的超精密车削试验,采用XRD对表层残余应力进行测量,对有限元仿真结果进行了验证,为硬铝合金超精密车削表面残余应力的控制打下理论基础.  相似文献   

4.
钛合金的已加工表面残余应力的数值模拟   总被引:1,自引:0,他引:1  
为了揭示高速切削对航空钛合金加工表面残余应力的影响,利用三维斜角切削有限元模型对钛合金Ti6Al4V的高速切削加工过程进行了模拟,获得了不同切削速度和不同切削深度下的已加工表面残余应力分布.模拟结果表明:切削速度对已加工表面残余应力具有重要影响,而切削深度对已加工表面残余应力影响较小; 已加工表面层残余应力为拉应力,沿深度方向由拉应力逐渐过渡到压应力; 3个主方向的残余应力值随切削速度的增加而增加,而随切削深度的增加无明显变化; 切削速度和切削深度对残余应力层的厚度影响都很小.  相似文献   

5.
《焦作工学院学报》2016,(2):230-235
针对陶瓷硬脆材料难加工特性,结合金刚石飞切与超声辅助加工的优点,提出超声辅助金刚石飞切这一新加工工艺,并将其应用于氧化锆陶瓷超精密切削,取得了较好加工效果。在分析了超声辅助金刚石飞切加工的特点基础上,建立其切削模型及切削力模型,搭建了超声辅助金刚石飞切实验平台,进行了氧化锆超声辅助金刚石飞切切削力试验及刀具磨损试验。通过实验对比,探讨超声辅助加工技术对切削力和刀具磨损的影响,分析金刚石飞切加工过程中切削参数(主轴转速、进给量速度、切削深度)对切削力的影响。结果表明,超声辅助金刚石飞切可明显降低切削力,并有效抑制刀具磨损进程。  相似文献   

6.
使用铣削方法加工P20模具钢,分析高速切削加工中,切削速度、进给量、切削深度对切削力、被加工零件的表面粗糙度的影响.研究结果表明:切削力受切削速度影响较小,进给量和切削深度的增大会引起切削力的成倍增大;被加工零件表面粗糙度受进给量影响最大,其次是切削速度,影响最小的是切削深度.  相似文献   

7.
超声椭圆振动切削技术(Ultrasonic Elliptical Vibration Cutting, UEVC)是近年来发展起来的一种超精密加工技术,其加工装置的结构设计是当前研究的难点之一。本文通过分析现有的超声椭圆振动切削装置,设计了一种基于圆弧型柔性铰链结构的超声椭圆振动装置,利用有限元分析工具对该装置进行模态分析,找出了影响其谐振频率的关键结构参数并用全局优化模块优化参数,使装置的某一阶纵振和弯振模态的谐振频率一致,同时对该装置进行了多场耦合分析以预测不同相位下的刀尖运动轨迹。仿真分析表明,后盖板长度的变化会引起纵振和弯振模态谐振频率的显著改变,而底座厚度的变化对纵振和弯振模态的谐振频率几乎都没有影响,顶端长度的变化仅对弯振模态的谐振频率有一定程度的影响。基于上述仿真分析及优化,制造出UEVC装置的样机并测量其谐振频率和振动特性,测量结果显示该装置的谐振频率测量值与仿真结果吻合较好,所开发的装置能在谐振状态下输出椭圆轨迹,同时可通过调节施加电压的幅值和相位来使刀尖输出不同的椭圆轨迹,能用于脆性材料微结构曲面的加工。此外,对该超声椭圆振动切削装置施加频率与装置谐振频率一致的交流电时,其纵振和弯振的振幅将随电压幅值的增加而线性增大,其中弯振振幅对电压幅值的变化更为敏感。  相似文献   

8.
针对目前加工激光沉积制造钛合金Ti6Al4V存在的加工质量较差、加工效率较低等问题,以切削力、表面形貌、表面粗糙度、亚表面损伤作为评价指标,采用了正交试验的方法通过设置不同的铣削参数对立铣后的表面层进行分析.结果表明:切削深度对切削力和表面粗糙度的影响较大;在每齿进给量为0.03 mm、切削速度为70 mm/min、切削深度为0.9 mm、切削宽度为0.5 mm时,切削力较小,表面粗糙度较低且亚表面损伤较小;沉积钛合金会出现未熔化粉末颗粒缺陷.工艺参数会对沉积钛合金的加工产生重要影响,且加工参数仍需要进一步优化.  相似文献   

9.
PCBN刀具加工TC4钛合金的切削加工性   总被引:2,自引:0,他引:2  
摘要:针对聚晶立方氮化硼(polycrystalline cubic boron nitride, PCBN)刀具材料和钛合金Ti-6Al-4V(TC4)工件材料的特点,采用单因素试验法对切削力和已加工表面粗糙度进行研究;通过扫描电子显微镜(scanning electron microscope, SEM)观察和能量分散光谱(energy dispersive analysis system,EDS)扫描分析,对PCBN高速切削钛合金TC4时的刀具损坏形态和损坏机理进行研究;采用对角正交回归试验法,求得PCBN刀具切削钛合金时的刀具寿命经验公式,并分析切削用量对刀具寿命的影响. 研究表明:PCBN高速切削钛合金时,粘结磨损、扩散磨损和脆性磨损是其主要损坏机理,在高切削速度、低进给量、低切削深度下PCBN刀具加工钛合金时的切削加工性最好,因此PCBN适用于钛合金的精加工.  相似文献   

10.
本文通过八种切削液在钛合金TC_4车削和攻丝时,对切削力(Fx、F_y)、扭矩(M)和切削温度(θ℃)的影响的切削试验,证明钛合金切削时以使用含硫(S)或磷(P)或氯(Cl)的极压切削液为宜,而且随着切削速度的不同要选用含有不同极压添加剂的极压切削液。  相似文献   

11.
使用未涂层的和AlCrSiN涂层的硬质合金车刀片以3种切削速度干式车削Ti-6Al-4V钛合金。研究发现AlCrSiN涂层刀片的切削寿命在各切削速度下都超过无涂层刀片, 而切削力、切削温度和工件表面粗糙度3项指标均低于无涂层刀具, 说明AlCrSiN涂层能够有效地保护基体从而维持刀具的锋利度。2种刀具在切削过程中均出现切削力先上升后下降的现象, 这与二者高温下产生的润滑氧化物有关。切削温度和工件粗糙度都与后刀面磨损量有正相关关系, 即随着后刀面磨损量的增加, 温度和粗糙度都随之增加, 但温度的增加还与前刀面第一变形区塑性变形增大, 热量增加有关。另外, 2种刀具产生的切屑尺寸、颜色、锯齿频率也证明了AlCrSiN涂层刀具磨损较慢,切削温度较低。  相似文献   

12.
微织构球头铣刀加工钛合金的有限元仿真   总被引:1,自引:0,他引:1  
为了研究微织构对球头铣刀切削性能的影响与表面微织构的抗磨减摩性能,通过分析微织构的设计理论,对微织构刀具和普通刀具切削钛合金TC4进行了三维动态切削仿真,对比分析了两种刀具在切削过程中切削力、切削温度及刀具磨损的变化.结果表明,在干式切削条件下,微织构刀具在切削过程中切削力降低了16%,切削温度降低了13%,磨损深度值是普通刀具的25%,但刀具变形变大.微织构在球头铣刀切削过程中能够减小切削力,降低切削温度,减小刀具前刀面的磨损,延长刀具寿命,但可能会影响加工精度.  相似文献   

13.
高效切削钛合金时刀具磨损试验分析   总被引:2,自引:0,他引:2  
针对航空发动机典型零件钛合金膜盘在加工过程中刀具磨损严重、加工效率低的问题,采用未涂层硬质合金刀具进行钛合金外圆车削加工试验研究,利用CCD观测系统和SEM的能谱分析(EDX)研究刀具刃口微观结构变化,分析刀具的磨损形态及不同切削条件和锯齿屑对刀具磨损的影响. 结果表明:钛合金外圆车削加工时,刀具磨损主要为粘结磨损、扩散磨损和氧化磨损,切削速度对刀具磨损影响较大,进给量次之,背吃刀量最小. 随着切削速度和进给量的增加,磨损加剧,锯齿屑的高频形成导致切削力的高频变化,这种高频率的冲击载荷在前刀面上产生应力和温度冲击,使刀具形成微裂纹,加速刀具磨损;使用冷却液可以减轻刀具后刀面粘结磨损和扩散磨损,从而可有效地控制刀具磨损.  相似文献   

14.
采用正交试验,并结合基于试验结果的经验模型,研究了PCBN刀具高速车削淬硬轴承钢的切削力及其变化规律,且对径向切削力模型进行了试验验证。结果表明,影响轴向力的主次因素为切削速度、背吃刀量和进给量;影响径向力、切向力和切削合力的主次因素为背吃刀量、进给量和切削速度;各切削分力随背吃刀量和进给量的增大呈线性增加趋势,随切削速度的增加是先增大而后又减小,径向力的增大趋势远大于轴向力和切向力。方差分析结果显示,切削力的回归模型线性关系高度显著,利用该模型对切削力进行预报,结果可靠,并进一步验证了背吃刀量是影响径向切削力的主要因素。  相似文献   

15.
本文基于ABAQUS软件的Johnson-Cook材料模型以及ALE网格划分技术对钛合金稳态切削加工过程进行了有限元模拟,并研究了钛合金的切屑成型过程、切削层的塑形应变以及工件温度的分布,从切屑形状上看,模拟结果与试验结果基本吻合。在此基础上分析了不同切削前角、切削深度和切削速度等参数对切削力的影响,发现在一定范围内适当增大切削前角或减小切削深度有利于切削的进行,此外切削速度的变化在一定范围内对切削力影响较小。  相似文献   

16.
为改善镁合金的切削加工性能及加工表面完整性,优化切削加工工艺参数,基于拟水平法设计了四因素四水平正交车削试验,研究切削三要素以及切削介质(常温干切、液态二氧化碳和液氮)对ZK61M镁合金车削加工表面完整性的影响规律。实验结果表明:切削深度对切削力的影响最显著,进给量次之,切削速度的影响较小,低温切削能降低切削力,但对切削力的影响不显著;进给量对表面粗糙度和残余应力具有显著影响,随着进给量增大,表面粗糙度增大,并引入表面残余拉应力;冷却介质对表面粗糙度和表面残余应力具有次显著影响,相比于常温切削,采用低温切削能有效降低加工表面粗糙度,细化表层晶粒,增大表面残余压应力,同时,采用液态二氧化碳作为冷却介质的效果优于液氮。基于灰色关联分析得到ZK61M镁合金低温切削的最优工艺参数:vc=100 m/min,f=0.05 mm/r,ap=0.4 mm,采用液态二氧化碳作为冷却介质。用关联分析结果建立了工艺参数与加工质量间的响应预测模型,平均误差为7.93%。  相似文献   

17.
为探究大螺距螺纹车削加工中刀具振动对加工表面形貌沿工件轴向分布特性的影响,进行螺距16 mm外螺纹的车削实验,获取刀具振动时域特征参数和加工表面形貌特征参数沿工件轴向分布的行为序列;采用灰色关联分析方法,研究刀具左刃、右刃切削大螺距螺纹时,沿切深方向、切削速度方向和轴向进给方向上刀具振动对螺纹面加工表面形貌分布特性的影响;对比两次不同切削方案的实验结果发现,刃口半径、后角和切削次序等参数直接影响刀具振动与加工表面形貌分布特性之间的关系,调整上述工艺参数可改变刀具振动对加工表面形貌的影响特性。  相似文献   

18.
旋转超声加工中磨粒冲击作用的仿真分析   总被引:1,自引:1,他引:0  
在对单个磨粒进行动力学分析的基础上,定义了评价超声冲击作用大小的量纲一的参数K.采用光滑质点流体动力学(SPH)有限元分析方法,研究了旋转超声加工过程中磨粒的超声冲击作用对材料内部裂纹形成及扩展的影响.仿真结果表明:随着K值的增大,斜向裂纹的倾角减小,扩展深度逐渐降低,磨粒的超声冲击作用是裂纹形成及扩展的主要原因;在切削过程中,随着切削深度的增加,切削力逐渐增大;但是当裂纹产生以后垂向冲击力急剧减小,而横向冲击力变化不大;加工中碎屑的崩碎使磨粒对工件材料具有局部微冲击作用,导致两个方向的切削力都在相对较大范围内波动.  相似文献   

19.
采用硬质合金刀具,通过一系列的单因素直角切削试验对铝合金7050-T7451微切削加工中的切屑形貌、切削力以及尺度效应等进行了研究。为了便于使用Kistler9257B型测力仪进行加工过程切削力的测量,对工件进行处理,使用数控铣削中心实现直角车削。试验方案在不同切削速度下变换切削深度,考虑刀具刃口半径的存在对微切削加工过程的影响。试验中收集不同切削参数下的切屑,得到切屑的宏观形貌;对切屑进行抛光腐蚀,在高倍光学显微镜下获取切屑的微观形貌,研究了切削参数对切屑厚度和卷曲程度等的影响规律。试验过程中实时测得不同切削条件下的切削力,讨论了微切削加工过程切向力和径向抗力受刀具刃口半径影响下的变化规律,并从单位切削力的角度出发研究了刀具刃口半径对微切削加工过程中尺度效应的影响规律。  相似文献   

20.
建立适用于变工况加工的切削力模型是将切削力信号用于切削过程监控的关键。建立了基于切削参数(切削速度、进给量、切削深度)与刀具状态(主要考虑后刀面磨损量)的切削力模型,通过试验值与模型的预测值之间的比较,进一步验证模型的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号