首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We consider a production-distribution system, where a facility produces one commodity which is distributed to a set of retailers by a fleet of vehicles. Each retailer defines a maximum level of the inventory. The production policy, the retailers replenishment policies and the transportation policy have to be determined so as to minimize the total system cost. The overall cost is composed by fixed and variable production costs at the facility, inventory costs at both facility and retailers and routing costs. We study two different types of replenishment policies. The well-known order-up to level (OU) policy, where the quantity shipped to each retailer is such that the level of its inventory reaches the maximum level, and the maximum level (ML) policy, where the quantity shipped to each retailer is such that the inventory is not greater than the maximum level. We first show that when the transportation is outsourced, the problem with OU policy is NP-hard, whereas there exists a class of instances where the problem with ML policy can be solved in polynomial time. We also show the worst-case performance of the OU policy with respect to the more flexible ML policy. Then, we focus on the ML policy and the design of a hybrid heuristic. We also present an exact algorithm for the solution of the problem with one vehicle. Results of computational experiments carried out on small size instances show that the heuristic can produce high quality solutions in a very short amount of time. Results obtained on a large set of randomly generated problem instances are also shown, aimed at comparing the two policies.  相似文献   

2.
In this paper, we consider a distribution system where a warehouse is responsible for replenishing the inventories at multiple retailers by a fleet of vehicles of limited capacity. If a distribution policy of the system involves split deliveries, that is, the inventory of at least one retailer is replenished by using multiple vehicle routes, the coordination of the deliveries can further reduce the inventory cost of the retailer. We consider the coordination where two split deliveries are realized by direct shipping and multiple-stop shipping, respectively. To the best of our knowledge, this kind of coordination was never studied in the literature but can find its application in inventory routing problems. This paper proposes and analyses a class of coordination policies for the split deliveries which can reduce the inventory costs of the retailers without increasing transportation costs. A non-linear programming model is established for formulating the class of polices. Because the optimal coordination policy corresponding to an optimal solution of the model may be hard to find and/or implement, two simple but effective coordination policies are proposed. The inventory cost savings realized by the two policies are evaluated analytically and algorithmically. Our theoretical analysis and computational experiments show that both policies are effective. Under certain conditions, they can save 50% of the inventory costs at the retailers without increasing transportation costs.  相似文献   

3.
This paper considers a two-stage supply chain, consisting of a single warehouse and multiple retailers facing deterministic demands, under a vendor-managed inventory (VMI) policy. It presents a two-phase optimisation approach for coordinating the shipments in this VMI system. The first phase uses direct shipping from the supplier to all retailers to minimise the overall inventory costs. Then, in the second phase, the retailers are clustered using a construction heuristic in order to optimise the transportation costs while satisfying some additional restrictions. The improvement of the system's performance through coordinated VMI replenishments against the system with direct shipping only is shown and discussed in the comparative analysis section.  相似文献   

4.
This paper deals with a two-stage supply chain that consists of two distribution centers and two retailers. Each member of the supply chain uses a (Q,R) inventory policy, and incurs standard inventory holding and backlog costs, as well as ordering and transportation costs. The distribution centers replenish their inventory from an outside supplier, and the retailers replenish inventory from one of the two distribution centers. When a retailer is ready to replenish its inventory that retailer must decide whether it should replenish from the first or second distribution center. We develop a decision rule that minimizes the total expected cost associated with all outstanding orders at the time of order placement; the retailers then repeatedly use this decision rule as a heuristic. A simulation study which compares the proposed policy to three traditional ordering policies illustrates how the proposed policy performs under different conditions. The numerical analysis shows that, over a large set of scenarios, the proposed policy outperforms the other three policies on average.  相似文献   

5.
This paper focuses on developing an integrated replenishment and routing plan that takes into account lateral transfers of both vehicles and inventory for a three-echelon supply chain system including a single plant, multiple distribution centers and multiple retailers. A mixed integer programming model to the overall system is formulated first, and then an optimization-based heuristic consisting of three major components is proposed. The purpose of the first component is to assign retailers to distribution centers, and determine routing schedules for each distribution center. And the remaining two components are corresponding to two smaller optimization models – a variant of the classical transportation problem modeled for determining vehicle transfer between distribution centers, and a variant of the conventional minimum cost network flow problem modeled for determining inventory replenishment and transfer. Experimental results reveal that the proposed algorithm is rather computational effectiveness, and the pooling strategy that considers both vehicles and inventory transfers is a worthy option in designing supply chain operations.  相似文献   

6.
This paper addresses the problem of optimally coordinating a production‐distribution system over a multi‐period finite horizon, where a facility production produces several items that are distributed to a set of customers by a fleet of homogeneous vehicles. The demand for each item at each customer is known over the horizon. The production planning determines how much to produce of each item in every period, while the distribution planning defines when customers should be visited, the amount of each item that should be delivered to customers and the vehicle routes. The objective is to minimize the sum of production and inventory costs at the facility, inventory costs at the customers and distribution costs. We also consider a related problem of inventory routing, where a supplier receives or produces known quantities of items in each period and has to solve the distribution problem. We propose a tabu search procedure for solving such problems, and this approach is compared with vendor managed policies proposed in the literature, in which the facility knows the inventory levels of the customers and determines the replenishment policies.  相似文献   

7.
In this paper, a quaternary policy system towards integrated logistics and inventory aspect of the supply chain has been proposed. A system of multi retailers and distributors, with each distributor following a unique policy, will be analysed. The first policy is continuous time replenishment policy where the retailers’ inventory is replenished in every time interval. In the next three policies, inventory of the retailers will be replenished by some definite policy factors. The vendor managed inventory (VMI) system is used for updating the inventory of the retailers. An order-up-to policy (q, Q) is used for updating the inventory of distributors. Total erstwhile demands to the retailer will be used to determine the amount of inventory acclivity. Furthermore, the distributors will be sending the delivery vehicles to few fellow retailers who are shortlisted according to the policy, followed by the retailers and associated distributors. On the basis of random demand that the retailers are facing from end customers and the total demand that has incurred in the supply chain, products are unloaded to the selected retailers from the delivery vehicle. The path of the delivery vehicle is retrieved by dynamic ant colony optimization. In addition, a framework has been developed to measure the end-customer satisfaction level and total supply chain cost incorporating the inventory holding cost, ordering cost and the transportation cost. The framework has been numerically moulded with different settings to compare the performance of the quadruplet policies.  相似文献   

8.
This paper develops a deterministic replenishment model with multiple warehouses (one is an owned warehouse and others are rented warehouses) possessing limited storage capacity. In this model, the replenishment rate is infinite. The demand rate is a function of time and increases at a decreasing rate. The stocks of rented warehouses are transported to owned warehouse in continuous release pattern. The model allows shortages in owned warehouse and permits part of the backlogged shortages to turn into lost sales—which is assumed to be a function of the currently backlogged amount. The solution procedure for finding the optimal replenishment policy is shown. As a special case of the model, the corresponding models with completely backlogged shortages and without shortages are also presented. The models are illustrated with the help of numerical examples. Sensitivity analysis of parameters is given in graphical form.Scope and purposeIn practical inventory management, there exist many factors like an attracted price discount for bulk purchase, etc. to make retailers buy goods more than the capacity of their owned warehouse. In this case, retailers will need to rent other warehouses or to rebuild a new warehouse. However, from economical point of views, they usually choose to rent other warehouses. If there are multiple warehouses available, an important problem faced by the retailers is which warehouses to be selected to hold items replenished, when to replenish as well as what size to replenish. For such a problem, the existing two-warehouse models, based on an unrealistic assumption that the rented warehouse has unlimited storage capacity, presented some procedures for determining the optimal replenishment policy. This paper extends the existing two-warehouse models in three directions. Firstly, the traditional two-warehouse models assumed the storage capacity of the rented warehouse unlimited. The present paper relaxes this impractical assumption and considers the situation with multiple rented warehouses having a limited capacity. Secondly, the traditional two-warehouse models considered a constant demand rate or a linearly increasing demand rate. In this model, the demand rate varies over time and increases at a decreasing rate, which implies an increasing market going to saturation. Thirdly, we extend the two-warehouse models to the case with partially backlogged shortages. The purpose of this paper is to build a multi-warehouse replenishment model to help decision-makers solve the problem of which warehouses to be chosen to store items replenished and how to replenish.  相似文献   

9.
This study focuses on scheduling replenishment lots of multiple products in a warehouse with restricted storage space where the replenishment cycle time of each product is given and is an integer multiple of some basic period. Assuming that the warehouse replenishes at the beginning of some basic period, this study proposes a new heuristic that utilizes two simple procedures to generate a replenishment schedule that minimizes the maximum warehouse-space requirement. By including a re-optimization mechanism and a Boltzmann function, the proposed heuristic obtains solutions very close to the global optimum within a reasonable run time. Using randomly generated instances, this study shows that the proposed heuristic significantly outperforms a previously published heuristic.  相似文献   

10.
Trade credit has many forms in today’s business practice. The most common form of trade credit policy that is used to encourage retailers to buy larger quantities is order-size dependent. When the number of ordered units exceeds the capacity of the own warehouse, an additional rented warehouse is required to store the excess units. Therefore, to incorporate the concept of order-size dependent trade credit and limited storage capacity, we proposed an integrated inventory model with capacity constraint and a permissible delay payment period that is order-size dependent. In addition, the unit production cost, which is a function of the production rate, is considered. Three theorems and an algorithm are developed to determine the optimal production and replenishment policies for both the supplier and the retailer. Finally, numerical examples are presented to illustrate the solution procedure and the sensitivity analyses of some key parameters are provided to demonstrate the proposed model.  相似文献   

11.
In this paper, we consider the periodic review joint replenishment problem under the class of cyclic policies. For each item, the demand in the protection interval is assumed stochastic. Moreover, a fraction of shortage is lost, while the other quota is backordered. We suppose that lead times and minor ordering costs are controllable. The problem concerns determining the cyclic replenishment policy, the lead times, and the minor ordering costs in order to minimize the long‐run expected total cost per time unit. We established several properties of the cost function, which permit us to derive a heuristic algorithm. A lower bound on the minimum cost is obtained, which helps us to evaluate the effectiveness of the proposed heuristic. The heuristic is also compared with a hybrid genetic algorithm that is specifically developed for benchmarking purposes. Numerical experiments have been carried out to investigate the performance of the heuristic.  相似文献   

12.
We consider a static divergent two-stage supply chain with one distributor and many retailers. The unsatisfied demands at the retailers’ end are treated as lost sales, whereas the unsatisfied demand is assumed to be backlogged at the distributor. The distributor uses an inventory rationing mechanism to distribute the available on-hand inventory among the retailers, when the sum of demands from the retailers is greater than the on-hand inventory at the distributor. The present study aims at determining the best installation inventory control-policy or order-policy parameters such as the base-stock levels and review periods, and inventory rationing quantities, with the objective of minimizing the total supply chain costs (TSCC) consisting of holding costs, shortage costs and review costs in the supply chain over a finite planning horizon. An exact solution procedure involving a mathematical programming model is developed to determine the optimum TSCC, base-stock levels, review periods and inventory rationing quantities (in the class of periodic review, order-up-to S policy) for the supply chain model under study. On account of the computational complexity involved in optimally solving problems over a large finite time horizon, a genetic algorithm (GA) based heuristic methodology is presented.  相似文献   

13.
This work presents an inventory model for optimizing the replenishment cycle time for a single deteriorating item under a permissible delay in payments and constraints on warehouse capacity (owned warehouse capacity, with excess inventory stored in rental warehouses). Rented warehouses are assumed to charge higher unit holding costs than owned warehouses. Furthermore, item deterioration rates are assumed to differ between warehouses. This study has two main purposes: First, the mathematical models of the inventory system are established under the above conditions. Second, this study demonstrates that the optimal solution not only exists but is unique, and two theorems are devised for determining the optimal replenishment cycle time. Finally, numerical examples are presented to illustrate the resulting theorems.  相似文献   

14.
We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.  相似文献   

15.
This study investigates the production and inventory problem for a system comprising an assembly supply chain and a distribution network. A uniform lot size is produced uninterruptedly with a single setup at each production stage. Equal-sized batch shipment policy is applied to the whole system and the number of batches can be varied. All retailers have agreed on a joint replenishment policy with a common replenishment cycle. The objective is to determine the optimal common replenishment cycle, the number of batches of each production stage and retailer, all of which minimises the integrated total cost. Moreover, a new concept is introduced; namely, critical replenishment cycle. The replenishment cycle division (RCD) and recursive tightening (RT) methods are then developed to obtain the optimal solutions to the subject problem. Two theorems are verified to ensure the solutions obtained by the RCD and RT methods reaching the global optimum. An example is presented to illustrate the procedures involved in the RCD and RT methods.  相似文献   

16.
The objective of this paper is to develop an optimal reorder policy for a two-echelon distribution system with one central warehouse and multiple retailers. We assume the warehouse has centralized stock information and each facility uses continuous-review batch ordering policy. Since echelon stock policies may show poor performance for distribution systems, we propose a new type of policy that utilizes the centralized stock information more effectively. We define the order risk policy, which decides reorder time based on the order risk which represents the relative cost increase due to immediate order compared to delayed order. We formulate the order risk and prove the optimality of the order risk policy under the system assumption that the warehouse guarantees delivery within the fixed lead time. The order risk is derived from the marginal analysis. Since exact calculation of the order risk is complex, an approximation method is provided. Computational experiment that compares our policy with existing policies shows that a significant cost savings is obtained. The concept of the order risk can be extended to the other models.Scope and purposeDue to the improvement of modern information technologies, many companies start tracking the real-time stock information of the supply chain members. Thus, the reorder policy based on the real-time centralized stock information becomes very important. In this paper, we consider the reorder policy for a continuous-review batch-ordering two-echelon distribution system, utilizing the centralized stock information. Existing reorder policies are classified into installation stock policies and echelon stock policies. Since installation stock policies consider only local stock information, echelon stock policies have been used when the centralized stock information is available. For serial and assembly systems, it has been known that the echelon stock policies are superior to the installation stock policies. However, for distribution systems, both policies may outperform each other in different situations. The purpose of this study is to develop the optimal reorder policy for a distribution system with one-warehouse and multiple retailers, where the real-time stock information is centralized at the warehouse. We define a new type of reorder policy of which the reorder decision is based on the ‘order risk’. The order risk is defined as the relative cost increase due to immediate order compared to delayed order. We formulate the order risk and prove the optimality. For computational simplicity, we provide an approximation method to calculate the order risk. Computational experiment shows that a significant cost savings is obtained.  相似文献   

17.
So far the literature on inventory control for perishable products has mainly focused on (near-) optimal replenishment policies for a stylized environment, assuming no lead-time, no lot-sizing, stationary demand, a first in first out withdrawal policy and/or product life time equal to two periods. This literature has given fundamental insight in the behavior and the complexity of inventory systems for perishable products. In practice, many grocery retailers have recently automated the inventory replenishment for non-perishable products. They recognize they may need a different replenishment logic for perishable products, which takes into account e.g. the age of the inventory in the system. Due to new information technologies like RFID, it now also becomes more economically feasible to register this type of information. This paper suggests a replenishment policy for perishable products which takes into account the age of inventories and which requires only very simple calculations. It will be shown that in an environment, which contains important features of the real-life retail environment, this new policy leads to substantial cost reductions compared with a base policy that does not take into account the age of inventories.  相似文献   

18.
This study is motivated by a problem that an industrial distributorship faced while distributing automotive spare parts to service and repair centers. Considering the problem encountered, we present an analytical model for joint inventory and shipment consolidation decisions in a two-stage distribution system with a single distribution center, multiple non-identical retailers, and an outside supplier. The retailers face stochastic end-customer demand and use continuous review to replenish inventories. On the other hand, the distribution center uses a periodic review policy and employs a time-based shipment consolidation policy to dispatch retailers’ accumulated orders at the end of each consolidation cycle. We present an exact optimization technique to compute the optimal replenishment quantity at the distribution center, order-up-to level at retailers, and a shipment consolidation cycle length to measure the effects of inventory at retailers on the overall performance. Finally, we perform numerical experiments to measure the impact of various parameters on the overall distribution system.  相似文献   

19.
This paper deals with a deterministic inventory model for linear trend in demand under inflationary conditions with different rates of deterioration in two separate warehouses (owned and rented warehouses). The replenishment rate is infinite. The stock is transferred from the rented warehouse to owned warehouse in continuous release pattern and the associated transportation cost is taken into account. At owned warehouse, shortages, if any, are allowed and partially backlogged with a rate dependent on the duration of waiting time up to the arrival of the next lot. The corresponding problems have been formulated as nonlinear constrained optimisation problems for two different policies (inventory follows shortage (IFS) and shortage follows inventory (SFI)). Finally, the model has been illustrated with a numerical example and to study the effects of changes of different system parameters on initial stock level, maximum shortage level and cycle length with the minimum cost of the system, sensitivity analyses have been carried out by changing one parameter at a time and keeping the others at their original values.  相似文献   

20.
An order storage assignment problem (SAP) is to find an effective way to locate products in a warehouse in order to improve the operational efficiency of order picking. Since SAP is an NP-hard problem, many heuristic algorithms have been proposed. Most of previous researches focused on picker-to-parts warehousing systems or automated storage and retrieval systems. However, pick-and-pass systems play an important role for the faster delivery of small and frequent orders of inventory with the rise of e-commerce and e-business in the global supply chain. Two factors lead to idle time of pickers in a pick-and-pass system: picking line imbalance and shortage replenishment of products. This paper develops a genetic based heuristic method to solve SAP for a pick-and-pass system with multiple pickers to determine the appropriate storage space for each product and balance the workload of each picking zone so that the performance of the system can be improved. A simulation model based on FlexSim is used to implement the proposed heuristic algorithm and compare the throughput for different storage assignment methods as well. The results indicate that the proposed heuristic policy outperforms existing assignment methods in a pick-and-pass system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号