共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
针对未知目标数条件下多弱小目标检测前跟踪(TBD)算法鲁棒性较低、运算量较大等问题,提出一种基于高斯粒子势概率假设密度(CPHD)滤波的多目标检测前跟踪算法.运用高斯函数近似目标状态的后验概率密度,采取粒子滤波的方法迭代更新CPHD中各高斯项的均值与协方差,无需重采样,避免了粒子退化和采样枯竭等问题;同时结合检测前跟踪算法的实际情况,得出粒子权值的更新表达式.仿真实验表明,与现有算法相比,所提出算法在降低复杂度的同时,可以更为可靠地传递目标势分布信息,从而提高多弱小目标数目和状态估计的准确性和稳定性. 相似文献
4.
5.
6.
7.
8.
9.
针对低信噪比时标准粒子滤波对弱小目标的检测与跟踪时存在的粒子贫乏、跟踪精度对粒子数目要求高等问题,提出一种基于高斯粒子群优化粒子滤波的弱小目标检测前跟踪算法。利用高斯粒子群优化算法优化重采样后的粒子集,使粒子集朝着后验概率密度分布取值较大的区域运动,增加粒子的多样性,克服了粒子贫乏问题,并在保证跟踪精度的前提下降低了跟踪所需要的粒子数目,提高了标准粒子滤波算法的检测和跟踪性能。同时,建立了检测前跟踪系统的观测模型和系统模型,对基于标准粒子滤波检测前跟踪算法和优化算法进行仿真,仿真实验结果表明高斯粒子群优化粒子滤波的检测前跟踪算法相比基于标准粒子滤波的检测前跟踪算法具有更好的检测与跟踪性能。 相似文献
10.
11.
基于动态规划的红外弱小运动目标的实时检测方法研究 总被引:3,自引:0,他引:3
文章针对低信噪比下红外弱小运动目标的特点,提出了一种正向动态规划算法。分析了算法的检测性能,并对算法实现中的一些关键问题进行了讨论。实验表明,该算法适应性强,能有效地完成对低信噪比下弱小运动目标的实时检测、识别与跟踪。 相似文献
12.
Track‐before‐detect algorithm based on the particle filter algorithm has the problems of low tracking precision, poor particles, and requiring a large amount of particles to be calculated in a low signal‐to‐noise ratio, which is difficult to meet the accuracy and speed required by the modern infrared search and tracking system. In this paper, an improved infrared small target detection and tracking method based on a new particle filter is proposed. This is where particles are used to represent an individual bat to imitate the hunting process of bats. By adjusting loudness, frequency, and impulse emissivity of a particle swarm, the optimal particle at that time is followed to search in the solution space. In addition, the global search and the local search can also be dynamically switched to improve the quality and distribution of the particle swarm. The performance of the proposed algorithm is tested in a simulation scene and the real scene of the infrared small target detection and tracking. Experimental results show that the proposed algorithm improves the performance of the infrared searching and tracking system. 相似文献
13.
提出了一种新的低信噪比红外序列图像运动点目标检测与跟踪算法,该算法有机地结合了TBD检测算法与粒子滤波跟踪算法。首先通过多帧TBD处理后,检测出运动目标的初始位置和运动速度,然后在跟踪阶段采用粒子滤波算法估计目标运动状态,可实现信噪比为2的点目标的检测与跟踪。对真实红外图像序列进行实验仿真,仿真结果证明,该算法具有良好的实时性与很高的精确性。 相似文献
14.
15.
In this paper, we study the problem of joint underwater target detection and tracking using an acoustic vector sensor (AVS). For this challenging problem, first a realistic frequency domain simulation is set up. The outputs of this simulation generate the two dimensional FRequency–AZimuth (FRAZ) image. On this image, the random finite set (RFS) framework is employed to characterize the target state and sensor measurements. We propose to use the Bernoulli filter, which is the optimal Bayes filter emerged from the RFS framework for randomly on/off switching single dynamic systems. Moreover, to increase the performance of detection and azimuth tracking in low signal-to-noise ratio (SNR) scenarios, a track-before-detect (TBD) measurement model for AVS is proposed to be used with the Bernoulli filter. Sequential Monte Carlo (SMC) implementation is preferred for the Bernoulli filter recursions. Extensive simulation results prove the performance gain obtained by the proposed approach both in estimation accuracy and detection range of the system. 相似文献
16.
双目视觉的弱点动目标粒子滤波跟踪定位研究 总被引:1,自引:0,他引:1
在研究红外图像序列的弱点动目标粒子滤波跟踪算法和双目立体视觉摄像机标定算法的基础上,基于双目视觉设计了双目图像序列弱点动目标的跟踪、空间定位系统。仿真实验表明:对粒子基于估计参数后的密度函数分配权重的算法,提高了图像跟踪精度,采用线性三角定位方法,有效地实现目标空间定位。 相似文献
17.
Tae-Wuk Bae Byoung-Ik Kim Young-Choon Kim Kyu-Ik SohngAuthor vitae 《Computers & Electrical Engineering》2010,36(6):1156-1164
This paper presents a new small target detection method using cross product of temporal pixels based on temporal profiles in infrared (IR) image sequences. Temporal characteristics of small targets and various backgrounds are different. A new algorithm classifies target pixels and background pixels through hypothesis testing using the cross product of pixels on temporal profile and predicts the temporal backgrounds based on the results. Small target pixels are detected by subtracting the predicted temporal background profile from the original temporal profile. For performance comparison between the proposed method and the conventional methods, the receiver operating characteristics (ROC) curves were computed experimentally. Experimental results show that the proposed algorithm has better discrimination of target and clutter pixels and lower false alarm rates than conventional methods. 相似文献
18.
对于强杂波背景下的低小慢目标,雷达检测变得异常困难。先跟踪后检测(TBD)算法能够有效解决低信噪比条件下低小慢目标的检测与跟踪问题,文章介绍了经典的检测前跟踪技术,分析了基于粒子滤波器的TBD算法,分析了Salmond提出的PF-TBD算法,针对其不能充分利用量测值且有粒子枯竭与退化的缺点,最后提出了相应的改进算法。 相似文献