首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Norovirus remains the leading cause of foodborne illness, but there is no effective intervention to eliminate viral contaminants in fresh produce. Murine norovirus 1 (MNV-1) was inoculated in either 100 ml of liquid or 100 g of food. The inactivation of MNV-1 by electron-beam (e-beam), or high-energy electrons, at varying doses was measured in model systems (phosphate-buffered saline [PBS], Dulbecco's modified Eagle's medium [DMEM]) or from fresh foods (shredded cabbage, diced strawberries). E-beam was applied at a current of 1.5 mA, with doses of 0, 2, 4, 6, 8, 10, and 12 kGy. The surviving viral titer was determined by plaque assays in RAW 264.7 cells. In PBS and DMEM, e-beam at 0 and 2 kGy provided less than a 1-log reduction of virus. At doses of 4, 6, 8, 10, and 12 kGy, viral inactivation in PBS ranged from 2.37 to 6.40 log, while in DMEM inactivation ranged from 1.40 to 3.59 log. Irradiation of inoculated cabbage showed up to a 1-log reduction at 4 kGy, and less than a 3-log reduction at 12 kGy. On strawberries, less than a 1-log reduction occurred at doses up to 6 kGy, with a maximum reduction of 2.21 log at 12 kGy. These results suggest that a food matrix might provide increased survival for viruses. In foods, noroviruses are difficult to inactivate because of the protective effect of the food matrix, their small sizes, and their highly stable viral capsid.  相似文献   

2.
The aim of this study was to identify a potential surrogate to describe the radiation sensitivity of the most common pathogens encountered in fruits. Three pathogens: Escherichia coli O157:H7 933, Listeria monocytogenes ATCC 51414, and Salmonella Poona, and five non-pathogens: E. coli K-12 MG1655, Listeria innocua Seeliger 1983 (NRRL B-33003 and NRRl B-33014), Enterobacter aerogenes, and Salmonella LT2 were inoculated (populations of 10(7)-10(9) CFU/ml) into model food systems (10% w/w gelatin) and exposed to doses up to 1.0 kGy using a 2 MeV Van der Graaf linear accelerator. The non-pathogen E. coli K-12 MG1655 was highly resistant to radiation (D(10)=0.88 kGy) in comparison to the other strains while L. monocytogenes was the more radiation-resistant pathogen (D(10)=1.09 kGy). Thus, E. coli K-12 MG1655 could be a suitable surrogate for e-beam studies with L. monocytogenes as the indicator pathogen. L. innocua strains were more radiation-sensitive (D(10)=0.66, 0.72 kGy) than their pathogenic counterpart. S. Poona and E. coli O157:H7 were even more radiation-sensitive (D(10)=0.38, 0.36 kGy, respectively). S. LT2 was the least radiation-resistant pathogen with D(10)=0.12 kGy. In a later study, the radiation resistance of the pathogens and the surrogate was evaluated when inoculated in a real food (i.e., fresh cantaloupe). The D(10) values obtained in this experiment were higher than those obtained with the model foods. However, the surrogate was still more radiation-resistant and could therefore be used to indicate decontamination of the target pathogens under electron beam irradiation.  相似文献   

3.
While the use of some chemical sanitizers is approved for inactivation of microbes on the surfaces of fruits and vegetables, these compounds often degrade product quality with limited improvement in product safety. The application of dense phase carbon dioxide (DPCD, or high-pressure CO2) is a nonthermal process for inactivation of foodborne pathogens inoculated into various juices and model solutions. In this work, DPCD was evaluated for its potential to inactivate Escherichia coli K-12 inoculated on fresh spinach leaves. Inoculated leaves were exposed for up to 40 min to DPCD at a subcritical condition (5 MPa, 40 degrees C) and two supercritical conditions (7.5 and 10 MPa, 40 degrees C) at a flow rate of 50 g of CO2/min. E. coli K-12 populations were reduced to nondetectable levels (approximately 5-log reduction) using supercritical treatment conditions at exposure times as short as 10 min; efficacy of DPCD at the subcritical state was limited. This research demonstrates that DPCD has potential as a pasteurization technology for application to leafy green vegetables, although issues with discoloration and other quality measures will need more extensive evaluations.  相似文献   

4.
Increased occurrences of fresh produce-related outbreaks of foodborne illness have focused attention on effective washing processes for fruits and vegetables. A titanium dioxide (TiO2) photocatalytic reaction under UV radiation provides a high rate of disinfection. The photo-killing effects of TiO2 on bacteria in liquid cultures under experimental conditions have been widely studied. However, the disinfection effects of the TiO2 photocatalytic reaction on fresh vegetables during a washing process have not been evaluated. Our objectives were to design a pilot-scale TiO2/UV photocatalytic reactor for fresh carrots and to compare the bactericidal effects of the TiO2/UV reaction against bacteria in liquid media and on carrots. TiO2/UV photocatalytic reactions for 40, 60, and 30 s were required for the complete killing of Escherichia coli, Salmonella Typhimurium, and Bacillus cereus (initial counts of approximately 6.7 log CFU/ml), respectively. The counts of total aerobic bacteria in fresh carrots and foodborne pathogenic bacteria in inoculated carrots were also measured. Counts of total aerobic bacteria were reduced by 1.8 log CFU/g after TiO2/UV photocatalytic disinfection for 20 min compared with a 1.1-log CFU/g reduction by UV alone. E. coli, Salmonella Typhimurium, and B. cereus (8 log CFU/ml) were inoculated onto carrots, and the number of surviving bacteria in carrots was determined after treatment. The TiO2/UV treatment exhibited 2.1-, 2.3-, and 1.8-log CFU/g reductions in the counts of E. coli, Salmonella Typhimurium, and B. cereus, respectively, compared with 1.3-, 1.2-, and 1.2-log CFU/g reductions by UV alone. The TiO2/UV photocatalyst reaction showed significant bactericidal effects, indicating that this process is applicable to nonthermal disinfection of fresh vegetables.  相似文献   

5.
Ionizing radiation can be effective in controlling the growth of food spoilage and foodborne pathogenic bacteria. This study reports on an investigation of the effectiveness of irradiation treatment to eliminate Listeria monocytogenes on laboratory-inoculated broccoli, cabbage, tomatoes, and mung bean sprouts. Irradiation of broccoli and mung bean sprouts at 1.0 kGy resulted in reductions of approximately 4.88 and 4.57 log CFU/g, respectively, of a five-strain cocktail of L. monocytogenes. Reductions of approximately 5.25 and 4.14 log CFU/g were found with cabbage and tomato, respectively, at a similar dose. The appearance, color, texture, taste, and overall acceptability did not undergo significant changes after 7 days of postirradiation storage at 4 degrees C, in comparison with control samples. Therefore, low-dose ionizing radiation treatment could be an effective method for eliminating L. monocytogenes on fresh and fresh-cut produce.  相似文献   

6.
Gaseous chlorine dioxide (ClO2) was evaluated for effectiveness in killing Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on fresh-cut lettuce, cabbage, and carrot and Salmonella, yeasts, and molds on apples, peaches. tomatoes, and onions. Inoculum (100 microl, ca. 6.8 log CFU) containing five serotypes of Salmonella enterica, five strains of E. coli O157:H7, or five strains of L. monocytogenes was deposited on the skin and cut surfaces of fresh-cut vegetables, dried for 30 min at 22 degrees C, held for 20 h at 4 degrees C, and then incubated for 30 min at 22 degrees C before treatment. The skin surfaces of apples, peaches, tomatoes, and onions were inoculated with 100 microl of a cell suspension (ca. 8.0 log CFU) containing five serotypes of Salmonella, and inoculated produce was allowed to dry for 20 to 22 h at 22 degrees C before treatment. Treatment with ClO2 at 4.1 mg/liter significantly (alpha = 0.05) reduced the population of foodborne pathogens on all produce. Reductions resulting from this treatment were 3.13 to 4.42 log CFU/g for fresh-cut cabbage, 5.15 to 5.88 log CFU/g for fresh-cut carrots, 1.53 to 1.58 log CFU/g for fresh-cut lettuce, 4.21 log CFU per apple, 4.33 log CFU per tomato, 1.94 log CFU per onion, and 3.23 log CFU per peach. The highest reductions in yeast and mold populations resulting from the same treatment were 1.68 log CFU per apple and 2.65 log CFU per peach. Populations of yeasts and molds on tomatoes and onions were not significantly reduced by treatment with 4.1 mg/liter ClO2. Substantial reductions in populations of pathogens on apples, tomatoes, and onions but not peaches or fresh-cut cabbage, carrot, and lettuce were achieved by treatment with gaseous ClO2 without markedly adverse effects on sensory qualities.  相似文献   

7.
Cilantro (Coriandrum sativum) inoculated with Escherichia coli O157:H7 at levels approximating 10(7) CFU/g was dipped in 200 ppm chlorine solution followed by low-dose gamma irradiation. Samples were plated on tryptic soy agar containing 50 microg/ml nalidixic acid (TSAN) as well as TSAN plates with two 7-ml layers of basal yeast extract agar (TSAN-TAL). Levels of E. coli O157:H7 recovered from both types of media were determined over 11 days. Chlorination alone reduced counts by just over 1.0 log cycle, whereas irradiation at 1.05 kGy resulted in a 6.7-log reduction, and a combination of irradiation and chlorination reduced counts more than 7 log cycles. Trained panels performed analytical sensory tests at time intervals for 14 days to detect changes in yellowing, tip burn, browning, black rot, sliminess, off-aroma, and off-flavor. Sensory tests found no significant differences among attributes over time or dose in samples irradiated at 1.08 to 3.85 kGy. This study showed that combination treatments of chlorination and low-dose irradiation can significantly reduce levels of E. coli O157:H7 in fresh cilantro while maintaining product quality.  相似文献   

8.
A study was conducted to determine if acidified sodium chlorite (1,200 ppm) and acetic and lactic acids (2 and 4%) were effective in reducing foodborne pathogens in beef trim prior to grinding in a simulated processing environment. The reduction of Salmonella Typhimurium and Escherichia coli O157:H7 at high (4.0 log CFU/g) and low (1.0 log CFU/g) inoculation doses was evaluated at various processing steps, including the following: (i) in trim just after treatment application, (ii) in ground beef just after grinding, (iii) in ground beef 24 h after refrigerated storage, (iv) in ground beef 5 days after refrigerated storage, and (v) in ground beef 30 days after frozen storage. All antimicrobial treatments reduced the pathogens on the trim inoculated with the lower inoculation dose to nondetectable numbers in the trim and in the ground beef. There were significant reductions of both pathogens in the trim and in the ground beef inoculated with the high inoculation doses. On the trim itself, E. coli O157:H7 and Salmonella Typhimurium were reduced by 1.5 to 2.0 log cycles, with no differences among all treatments. In the ground beef, the organic acids were more effective in reducing both pathogens than the acidified sodium chlorite immediately after grinding, but after 1 day of storage, there were no differences among treatments. Overall, in the ground beef, there was a 2.5-log reduction of E. coli O157:H7 and a 1.5-log reduction of Salmonella Typhimurium that was sustained over time in refrigerated and frozen storage. Very few sensory differences between the control samples and the treated samples were detected by a consumer panel. Thus, antimicrobial treatments did not cause serious adverse sensory changes. Use of these antimicrobial treatments can be a promising intervention available to ground beef processors who currently have few interventions in their process.  相似文献   

9.
Studies were conducted to determine whether four strains of lactic acid bacteria (LAB) inhibited Escherichia coli O157: H7 and Salmonella in ground beef at 5 degrees C and whether these bacteria had an impact on the sensory properties of the beef. The LAB consisted of frozen concentrated cultures of four Lactobacillus strains, and a cocktail mixture of streptomycin-resistant E. coli O157:H7 and Salmonella were used as pathogens. Individual LAB isolates at 10(7) CFU/ml were added to tryptic soy broth containing a pathogen concentration of 10(5) CFU/ml. Samples were stored at 5 degrees C, and pathogen populations were determined on days 0, 4, 8, and 12. After 4 days of storage, there were significant differences in numbers of both pathogens exposed to LAB isolates NP 35 and NP 3. After 8 and 12 days of storage, all LAB reduced populations of both pathogens by an average of 3 to 5 log cycles. A second study was conducted in vacuum-packaged fresh ground beef. The individual LAB isolates resulted in an average difference of 1.5 log cycles of E. coli O157:H7 after 12 days of storage, and Salmonella populations were reduced by an average of 3 log cycles. Following this study, a mixed concentrated culture was prepared from all four LAB and added to ground beef inoculated with pathogen at 10(8) CFU/g. After 3 days of storage, the mixed culture resulted in a 2.0-log reduction in E. coli O157:H7 compared with the control, whereas after 5 days of storage, a 3-log reduction was noted. Salmonella was reduced to nondetectable levels after day 5. Sensory studies on noninoculated samples that contained LAB indicated that there were no adverse effects of LAB on the sensory properties of the ground beef. This study indicates that adding LAB to raw ground beef stored at refrigeration temperatures may be an important intervention for controlling foodborne pathogens.  相似文献   

10.
E-beam irradiation was studied as a post-harvest treatment for red raspberries (Rubus idaeus L.). Microbial inactivation (natural microbiota and potential pathogenic bacteria) and bioactive properties (phenolic content, vitamin C content and antioxidant activity and cytotoxicity) of these fruits were evaluated before and after irradiation and during storage of 14 days at 4 °C. A reduction of 2 log CFU/g of mesophilic bacteria and 3 log CFU/g on filamentous fungi, and no detection of foodborne inoculated pathogens (3 log CFU/g) was achieved with an e-beam treatment at 3 kGy and during 7 days of refrigerated storage. Regarding bioactive properties, the results suggested that irradiation could preserve the phenolic content and antioxidant activity of raspberries through 7 days of cold storage, even though a decrease of 80% on ascorbic acid concentration was observed. Furthermore, no in vitro inhibitory effect on human cells lines was observed for the extracts from e-beam-treated raspberries. The overall results suggested that use of e-beam irradiation as post-harvest treatment of raspberries as an emergent, clean and environmental friendly process to extend the shelf-life of this fruit with safety and preservation of bioactivity.Industrial relevanceRed raspberries are known to demonstrate high bioactivity that could be beneficial to human health, but are highly perishable and often associated with foodborne outbreaks, which makes its safety and commercialization a challenge. The use of a terminal control such as irradiation might reduce the burden of disease transmission and extend the quality of fresh red raspberries. The present research indicated that e-beam irradiation can be used as post-harvest treatment of raspberries, guarantying its safety and quality with the add-value of shelf-life extension.  相似文献   

11.
Hydrogen peroxide (2.5%) alone or hydrogen peroxide (1%) in combination with nisin (25 microg/ml), sodium lactate (1%), and citric acid (0.5%) (HPLNC) were investigated as potential sanitizers for reducing Escherichia coli O157:H7 or Listeria monocytogenes populations on whole cantaloupe and honeydew melons. Whole cantaloupes inoculated with E. coli O157:H7 and L. monocytogenes at 5.27 and 4.07 log10 CFU/cm2, respectively, and whole honeydew melons inoculated with E. coli O157:H7 and L. monocytogenes at 3.45 and 3.05 log10 CFU/cm2, respectively, were stored at 5 degrees C for 7 days. Antimicrobial washing treatments were applied to inoculated whole melons on days 0 or 7 of storage and surviving bacterial populations and the numbers transferred to fresh-cut pieces were determined. At days 0 and 7 treatment with HPLNC significantly (p<0.05) reduced the numbers of both pathogens, by 3 to 4 log CFU/cm2 on both types of whole melon. Treatment with HPLNC was significantly (p<0.05) more effective than treatment with 2.5% hydrogen peroxide. While fresh-cut pieces prepared from stored whole melons were negative for the pathogens by both direct plating and by enrichment, fresh-cut pieces from cantaloupe melons treated with 2.5% hydrogen peroxide were positive for both pathogens and pieces from honeydew melons were positive for E. coli 0157:H7. The native microflora on fresh-cut melons were also substantially reduced by HPLNC treatment of whole melons. The results suggest that HPLNC could be used to decontaminate whole melon surfaces and so improve the microbial safety and quality of fresh-cut melons.  相似文献   

12.
There have been several recent outbreaks of salmonellosis and infections with Escherichia coli O157:H7 linked to the consumption of raw sprouts. Use of ionizing radiation was investigated as a means to reduce or to totally inactivate these pathogens, if present, on the sprouts. The radiation D value, which is the amount of irradiation in kilograys for a 1-log reduction in cell numbers, for these pathogens was established using a minimum of five doses at 19 +/- 1 degrees C. Before inoculation, the sprouts were irradiated to 6 kGy to remove the background microflora. The sprouts were inoculated either with Salmonella spp. cocktails made with either meat or vegetable isolates or with E. coli O157:H7 cocktails made with either meat or vegetable isolates. The radiation D values for the Salmonella spp. cocktails on sprouts were 0.54 and 0.46 kGy, respectively, for the meat and vegetable isolates. The radiation D values for the E. coli O157:H7 cocktails on sprouts were 0.34 and 0.30 kGy, respectively, for the meat and vegetable isolates. Salmonella was not detected by enrichment culture on sprouts grown from alfalfa seeds naturally contaminated with Salmonella after the sprouts were irradiated to a dose of 0.5 kGy or greater. Ionizing radiation is a process that can be used to reduce the population of pathogens on sprouts.  相似文献   

13.
Produce is responsible for an increasingly larger proportion of foodborne disease outbreaks. In particular, the globalization of the food supply may introduce new food safety risks and allow widespread distribution of contaminated food, particularly produce. The objectives of this study were to: (i) compare the overall quality of domestic and Mexican produce throughout the packing process; (ii) examine changes in microbiological quality of both domestic and Mexican produce at each stage of production and processing; and (iii) evaluate the prevalence of select pathogens on fresh produce, including leafy green, herbs, melons, and vegetables. Furthermore, we also sought to characterize the antibiotic resistance profiles of Enterococcus faecium and Enterococcus faecalis strains isolated from fresh produce. A total of 466 produce and matching environmental swab samples was collected from various locations in packing sheds in the southern US from November 2002 through December 2003. These samples were assayed by enumerative tests for total aerobic bacteria (APC), total coliforms, total Enterococcus, and E. coli. Produce samples were also analyzed for the presence of Salmonella, Listeria monocytogenes, Shigella, and E. coli O157:H7. A total of 112 E. faecium and E. faecalis isolates were further screened for antibiotic resistance using a panel of seventeen antibiotics. Overall, the microbiological quality of fresh produce ranged from 4.0 to 7.9 log(10) CFU/g (APC); less than 1.0 log(10) to 4.5 log(10) CFU/g (coliforms); less than 1.0 log(10) to 4.0 log(10) CFU/g (E. coli); and less than 1.0 log(10) to 5.4 log(10) CFU/g (Enterococcus). No Salmonella, Shigella, or E. coli O157:H7 were detected from the 466 25-g produce samples tested. However, three domestic cabbage samples were found to be positive for L. monocytogenes. Of the Enterococcus isolates, E. faecium had a higher degree of resistance to antibiotics in general, while Enterococcus spp. isolated from Mexican produce had a higher degree of antibiotic resistance when compared to strains isolated from produce samples of domestic origin. Despite increased attention to the role of imported produce in foodborne disease, this study does not support the assumption that domestic produce is of higher microbial quality than Mexican produce.  相似文献   

14.
Abstract: The use of ionizing radiation for the control of foodborne pathogens and extending the shelf life of fresh iceberg lettuce and fresh spinach has recently been approved by the U.S. Food and Drug Administration. The efficacy of electron beam irradiation for controlling foodborne pathogens has been reported. For this experiment, the effectiveness of electron beam irradiation on the microbiological and sensory characteristics of fresh spinach was studied. Total aerobic plate counts were reduced by 2.6 and 3.2 log CFU/g at 0.7 and 1.4 kGy, respectively. Lactic acid bacteria were reduced at both doses of e-beam but grew slowly over the 35 d of the experiment. Yeasts and molds were not reduced in samples exposed to 0.7 kGy whereas 1.4 kGy significantly reduced microbial counts. Gas compositions (O2 and CO2) were significantly different than controls. Oxygen levels inside the spinach sample bags decreased over time; however, O2 levels did not drop below 1% that can induce anaerobic fermentation. CO2 levels for all treatments increased through day 4; yet 7 d after irradiation, CO2 level differences were not significant in both control and irradiated samples. Irradiation dose did not affect the basic tastes, aromatics, or mouth feels of fresh spinach, however; hardness attributes decreased as irradiated dose increased and slimy attributes of fresh spinach were higher in control samples compared to irradiated samples.  相似文献   

15.
Two Escherichia coli O157:H7 strains, SEA 13 B88 gfp 73ec and B6-914 gfp 90ec, together with two bacteria, three yeasts, and two molds that were randomly selected from a collection of microorganisms found on apples or in apple cider, were inoculated into apple cider and subjected to electron beam irradiation at several doses between 0.0 and 2.3 kGy at the Iowa State University Linear Accelerator Facility. The D-values for the E. coli O157:H7 strains ranged between 0.25 and 0.34 kGy; the D-values for most of the normal flora from apples ranged between 0.24 and 0.59 kGy. By taking into account possible variations in treatment conditions, it was calculated that irradiation at 2.47 kGy should achieve a 5-log reduction of E. coli O157:H7 in apple cider at the 95% confidence level. Naturally occurring yeasts might survive such irradiation treatment.  相似文献   

16.
Enterobacter sakazakii is an emerging foodborne pathogen that has caused illnesses and deaths in infants and elderly immunocompromised adults. Outbreaks of E. sakazakii infection have been associated with infant formulas, but the documented presence of this pathogen in a wide variety of ready-to-eat foods, including lettuce and other raw vegetables, makes it important to learn more about its behavior in these environments. We investigated the survival and growth characteristics of E. sakazakii on fresh-cut apple, cantaloupe, strawberry, watermelon, cabbage, carrot, cucumber, lettuce, and tomato and in juices prepared from these fruits and vegetables. Produce and juices were inoculated with E. sakazakii at 2 to 3 log CFU/g and 1 to 2 log CFU/ml, respectively, and stored at 4, 12, or 25 degrees C. Populations either did not change or gradually decreased in fresh-cut produce and juices stored at 4 degrees C but grew at 12 degrees C on fresh-cut apple, cantaloupe, watermelon, cucumber, and tomato and in all juices except apple, strawberry, cabbage, and tomato juices. All fresh-cut fruits and vegetables except strawberry supported growth of E. sakazakii at 25 degrees C. Growth occurred in all juices except apple, strawberry, and cabbage juices, followed by decreases in population to < 1 CFU/ml after 48 to 72 h, which coincided with decreases in pH and an increase in the population of lactic acid bacteria. Increases in total counts occurred in all juices except strawberry juice stored at 25 degrees C and apple and strawberry juices stored at 12 degrees C. Total counts increased in cantaloupe, carrot, cucumber, and lettuce juices stored at 4 degrees C. Populations of molds and yeasts increased in apple and tomato juices stored at 25 degrees C but decreased to <1 CFU/ml in cabbage, lettuce, and cucumber juices. Further characterization of the behavior of E. sakazakii on fresh produce and in unpasteurized juice as affected by commercial packaging and handling practices is needed.  相似文献   

17.
A five-strain Listeria monocytogenes culture was inoculated onto six different types of ready-to-eat (RTE) meats (frankfurters, ham, roast beef, bologna, smoked turkey with lactate, and smoked turkey without lactate). The meats were vacuum packed and stored at 4 degrees C for 24 h prior to irradiation. Populations of L. monocytogenes were recovered by surface plating on nonselective and selective media. The margins of safety studied include 3-log (3D) and 5-log (5D) reduction of pathogenic bacteria to achieve an optimal level of reduction while retaining organoleptic qualities of the meats. A 3-log reduction of L. monocytogenes was obtained at 1.5 kGy when nonselective plating medium was used. The dosages for 3-log reduction were 1.5 kGy for bologna, roast beef, and both types of turkey and 2.0 kGy for frankfurters and ham on the basis of use of selective medium. The D10-values ranged from 0.42 to 0.44 kGy. A 5-log reduction of L. monocytogenes was obtained at 2.5 kGy with nonselective medium. With selective medium, the dosages were 2.5 kGy for bologna, roast beef, and both types of turkey and 3.0 kGy for frankfurters and ham. Survival of L. monocytogenes in the same RTE meat types after irradiation was also studied. Meats were inoculated with 5 log L. monocytogenes per g and irradiated at doses of 2.0 and 4.0 kGy. Recovery of the surviving organisms was observed during storage at temperatures of 4 and 10 degrees C for 12 weeks. Preliminary results showed no growth in meats irradiated at 4.0 kGy. Survivors were observed for irradiated meats at 2.0 kGy stored at 10 degrees C after the second week. No growth was observed in samples irradiated at 2.0 kGy stored at 4 degrees C until the fifth week.  相似文献   

18.
The efficacy of controlling Escherichia coli O157:H7 in ground beef patties by combining irradiation with vacuum packaging or modified atmosphere packaging (MAP) was investigated. Fresh ground beef patties were inoculated with a five-strain cocktail of E. coli O157:H7 at 5 log CFU/g. Single patties, packaged with vacuum or high-CO(2) MAP (99.6% CO(2) plus 0.4% CO), were irradiated at 0 (control), 0.5, 1.0, or 1.5 kGy. The D(10)-value for this pathogen was 0.47 ± 0.02 kGy in vacuum and 0.50 ± 0.02 kGy in MAP packaging. Irradiation with 1.5 kGy reduced E. coli O157:H7 by 3.0 to 3.3 log, while 0.5 and 1.0 kGy achieved reductions of 0.7 to 1.0, and 2.0 to 2.2 log, respectively. After irradiation, the numbers of survivors of this pathogen on beef patties in refrigerated storage (4°C) did not change significantly for 6 weeks. Temperature abuse (at 25°C) resulted in growth in vacuum-packaged patties treated with 0.5 and 1.5 kGy, but no growth in MAP packages. This study demonstrated that combining irradiation with MAP was similar in effectiveness to irradiation with vacuum packaging for control of E. coli O157:H7 in ground beef patties during refrigerated storage. However, high-CO(2) MAP appeared to be more effective after temperature abuse.  相似文献   

19.
Improvements in methods for disinfecting fresh-cut cantaloupe could reduce spoilage losses and reduce the risk of foodborne illness from human pathogen contamination. The objective of this study was to investigate the feasibility of using hot-water treatment in combination with low-dose irradiation to reduce native microbial populations while maintaining the quality of fresh-cut cantaloupe. Whole cantaloupes were washed in tap water at 20 or 76 degrees C for 3 min. Fresh-cut cantaloupe cubes, prepared from the washed fruit, were then packaged in clamshell containers, and half the samples were exposed to 0.5 kGy of gamma radiation. Native microflora populations and sensory qualities were evaluated during the subsequent 7 days of storage at 4 degrees C. The hot-water surface pasteurization reduced the microflora population by 3.3 log on the surface of whole fruits, resulting in a lower microbial load on the fresh-cut cubes compared with cubes cut from fruit treated with cold water. Irradiation of cubes prepared from untreated fruit to an absorbed dose of 0.5 kGy achieved a low microbial load similar to that of cubes prepared from hot-water-treated fruit. The combination of the two treatments was able to further reduce the microflora population. During storage, the headspace atmosphere of the packages was not significantly influenced by any of the treatments. Color, titratable acidity, pH, ascorbic acid, firmness, and drip loss were not consistently affected by treatment with irradiation, hot water, or the combination of the two. Cubes prepared from hot-water-treated whole fruit had slightly lower soluble solids content. The combination of hot-water pasteurization of whole cantaloupe and low-dose irradiation of packaged fresh-cut melon can reduce the population of native microflora while maintaining the quality of this product.  相似文献   

20.
Improving the microbial safety while maintaining quality of fresh fruits and vegetables will increase consumer confidence in fresh produce. This study was conducted to investigate the effects of irradiation at 1 kGy, a dose that potentially inactivates E. coli O157:H7 by 5 logs, on the quality of 13 common fresh-cut vegetables: iceberg, romaine, green and red leaf lettuce, spinach, tomato, cilantro, parsley, green onion, carrot, broccoli, red cabbage, and celery. The results showed that the appearance of irradiated samples was similar to the nonirradiated ones except that irradiated carrots, celery, cilantro, and green onions had higher appearance scores than corresponding nonirradiated vegetables. There was no difference in the instrumental texture between irradiated samples and nonirradiated ones. The aroma of several irradiated vegetables was significantly better than controls after 14-d storage, because these control samples decayed or senesced. The 1 kGy irradiation did not affect vitamin C content of most vegetables; however, irradiated green and red leaf lettuce had 24% to 53% lower vitamin C contents than the controls. Our results suggest that most fresh-cut fruits and vegetables tested can tolerate up to 1 kGy irradiation without significant losses in any of the quality attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号