首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Both tetragonal ( t ) and monoclinic ( m ) ZrO2 particles in ZrO2-toughened Al2O3 can give rise to toughening. In the stress field of propagating cracks, the t -ZrO2 particles can undergo the stress-induced t → m transformation, and the residual stresses around already-transformed m -ZrO2 particles can cause microcracking. The t -ZrO2 particles transformed in crack tip stress fields do not, however, also cause appreciable microcracking. The toughening increments via these distinct mechanisms are comparable. It appears that optimally fabricated Zr02-toughened Al2O3's should contain a mixture of t - and m -ZrO2.  相似文献   

2.
The transformation of ultrafine powders (particle size, 0.01 to 0.04 μm) of the system ZrO2–Al2O3, prepared by spraying their corresponding nitrate solutions into an inductively coupled plasma (ICP) of ultrahigh temperature, was investigated. The powders were composed of metastable tetragonal ZrO2 ( mt- ZrO2) and γ-Al2O3. On heating, the mt- ZrO2 (or tetragonal ZrO2, t -ZrO2) was retained up to 1200°C. At 1380°C the transformation to monoclinic ZrO2 ( m -ZrO2) occurred and the amount of the m -ZrO2 decreased with the increase in Al2O3 content, thus indicating the stabilization of the t -ZrO2 by the Al2O3, which seems to be explained in terms of the retardation of grain growth.  相似文献   

3.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

4.
A diffusion couple of 3 mol% Y2O3–ZrO2 and titanium was isothermally annealed in argon at temperatures between 1100° and 1550°C. The phases and microstructure in the ceramic side were investigated using scanning electron microscopy and transmission electron microscopy, both attached to an energy-dispersive spectrometer. After annealing at 1100°C/6 h, zirconia grains did not grow conspicuously and evolved only traces of oxygen, resulting in t -ZrO2− x but not α-Zr. At temperatures above 1300°C, a significant amount of oxygen evolved from zirconia, reducing the O/Zr ratio, such that α-Zr was excluded from t -ZrO2− x during cooling, yielding a higher O/Zr ratio (≈2). When held at 1550°C/6 h, zirconia grains grew rapidly. The α-Zr was segregated on grain boundaries during cooling by the exsolution of zirconium from ZrO2− x , while twinned t '-ZrO2− x or lenticular t -ZrO2− x , which was embedded in ordered c- ZrO2− x , was found. The ordered c -ZrO2− x was identified by the     {113} superlattice reflections of its electron diffraction patterns.  相似文献   

5.
The relative abundance of the cubic ( c ), tetragonal ( t ), monoclinic ( m ), and orthorhombic ( o ) polymorphs of ZrO2, and the δ phase, Mg2Zr5O12, present in samples of 3.4-wt%-magnesia-partially-stabilized zirconia have been determined by Rietveld analysis of X-ray powder diffraction data. The samples studied correspond to the as-fired (AF), and subetectoid-aged maximum-strength (MS) and thermalshock (TS) states, with their surfaces in the ground or polished condition. The polymorph abundances of the bulk and near-surface regions are discussed in relation to the type of surface treatment. Grinding produces significant quantities of both m - and o -ZrO2 in the near-surface regions of all samples. The m content increases from about 5 wt% in the bulk, to 10, 24, and 33 wt% in AF, MS, and TS material, respectively, while the o content increases from trace amounts to about 11 wt% in all samples. The m and o phases both increase at the expense of t -ZrO2, and the transformation is accompanied by significant lattice distortion and/or crystal size reduction. Thus, measurement of only the 'ground-surface-monoclinic' content does not give an accurate indication of the total amount of transformable t -ZrO2 in ceramics of this kind. Polishing removes some of the ground-surface m -ZrO2 in MS and TS, and all of the m -ZrO2 in AF material. The o -ZrO2 produced by grinding also declines substantially in AF and MS, but is not removed by polishing of TS. As a result, the bulk composition cannot be guaranteed, in the general case, to be accessible by X-ray analysis of polished surfaces.  相似文献   

6.
Since the contribution of transformation toughening increases with the loca crack resistance (which is proportional to the toughness of the matrix), ZrO2 particles were added to a toughened, whisker-reinforced ceramic matrix. Analysis revealed that the combination of these multiple toughening agents should result in ceramic composites tougher than (1) that achieved by either mechanism by itself or (2) the sum of the two processes. The toughness of mullite could be increased 1.8-and 2.4-fold with a 20 vol% addition of ZrO2 particles or SiC whiskers, respectively. However, when 20 vol% of both ZrO2 particles and SiC whiskers were added, the toughness was increased at least 3-fold with monoclinic m -ZrO2 and by >5-fold with tetragonal t -ZrO2. The differences in the toughening achieved when t -ZrO2 vs m -ZrO2 is present in the SiC-whisker-reinforced mullite are attributed to differences in their interdependencies upon the whisker reinforcement.  相似文献   

7.
8.
Aqueous solutions of zirconium acetate and aluminum nitrate were spray pyrolyzed at 250°C and upquenched to different temperatures to yield metastable solid solutions of composition Zr(1− x )AlxO(2− x /2). An amorphous oxide forms first during pyrolysis which subsequently crystallizes as a single phase for x ≤ 0.57 (≤40 mol% Al2O3). The crystallization temperature increased with Al2O3 content. Electron diffraction, supported by Raman spectroscopy, indicates that the initial phase is tetragonal. At higher temperatures, the initial solid solation partitions to other metastable phases, viz., t -ZrO2+γ-Al2O3, prior to achieving their equilibrium phase assemblage, m -ZrO2+α-Al2O3. Partitioning yields a nanocomposite microstructure with grain sizes of 20–100 nm, compared to the 3 to 5 nm in the initial, single phase. Compositions containing 45 to 50 mol% Al2O3 concurrently crystallize and partition. The structure selected during crystallization and the partitioning phenomena are discussed in terms of diffusional constraints during crystallization, which are conceptually similar to those operating during rapid solidification.  相似文献   

9.
Zirconia–titanium (ZrO2–Ti) composites have been considered potential thermal barrier graded materials for applications in the aerospace industry. Powder mixtures of Ti and 3 mol% Y2O3 partially stabilized ZrO2 in various ratios were sintered at 1500°C for 1 h in argon. The microstructures of the as-sintered composites were characterized by X-ray diffraction and transmission electron microscopy/energy-dispersive spectroscopy. Ti reacted with and was mutually soluble in ZrO2, resulting in the formation of α-Ti(O, Zr), Ti2ZrO, and/or TiO. These oxygen-containing phases extracted oxygen ions from ZrO2, whereby oxygen-deficient ZrO2 was generated. For relatively small Ti/ZrO2 ratios, specimens with ≤30 mol% Ti, TiO were formed as oxygen could be sufficiently supplied by excess ZrO2. For the specimens with ≥50 mol% Ti, lamellar Ti2ZrO was precipitated in α-Ti(Zr, O), with no TiO being found. Both m -ZrO2− x and t -ZrO2− x were found in specimens with ≤50 mol% Ti; however, only c -ZrO2− x was formed in the specimen with 70 mol% Ti. As ZrO2 was gradually dissolved into Ti, yttria was retained in ZrO2 because of the very limited solubility of yttria in α-Ti(O, Zr) or TiO. The concentration of retained yttria and the degree of oxygen deficiency in ZrO2 increased with the Ti content. The complete dissolution of ZrO2 into Ti was followed by the precipitation of Y2Ti2O7 in the specimen with 90 mol% Ti.  相似文献   

10.
The stress-induced martensitic transformation of t -ZrO2 precipitates in a ternary MgO-Y2O3-ZrO2 alloy has been studied in situ in the transmission electron microscope. The transformation occurs autocatalytically and takes place by piecewise growth of two twin-related m -ZrO2 variants. Unloading causes retransformation of partially transformed precipitates, but this reverse ( m → t ) transformation of fully transformed precipitates only occurs on heating. The martensitic transformation in this system is clearly thermoelastic .  相似文献   

11.
Crystallization of an MgO-Al2O3-SiO2-ZrO2 sintered glass frit was studied. Heat treatment at 850° or 900°C caused initial crystallization of μ-cordierite and tetragonal ( t ) ZrO2. The t -ZrO2 crystallized with an irregular dendritic morphology and could be transformed to monoclinic ( m ) symmetry under certain conditions; the cordierite underwent the μ→α a transformation with extended annealing. Heat treatments at 1000°C caused crystallization of t -ZrO2 rods and spheroids in an α-cordierite matrix; these ZrO2 crystals, however, are resistant to transformation to m -ZrO2. The beneficial effects of ZrO2 on the fracture toughness of cordierite-based glass-ceramics are described.  相似文献   

12.
MoO2 is found to stabilize m -ZrO2 Because of the addition of MoO2 into ZrO2 at the surface region of an Al2O3-15 vol% ZrO2composite, the volume fraction of m -ZrO2 at the surface increases from 0.3 to 0.5–0.6 without changing the size of the ZrO2grains. This enhanced transfomation results in an increase in flexural strength of up to 30% because of compressive stresses built in at the surface. The increase in flexural strength is proportional to the difference in volume fraction of m -ZrO2 between the surface layer and the bulk matrix, in agreement with a previous analysis.  相似文献   

13.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

14.
The crystallization of MgO-Al2O3-SiO2-ZrO2 glasses at 1000°C was studied. Isothermal heat treatments of a cordierite-based glass (2MgO.2Al2O3.5SiO2= Mg2Al4Si5O18) with 7 wt% ZrO2 produced surface crystallization of α-cordierite and tetragonal ZrO2 ( t -ZrO2). These phases advanced into the glass by cocrystallization of t -ZrO2 rods in an α-cordierite matrix with a well-defined orientation relation. The t -ZrO2 rods were unstable with respect to diffusional breakup (a Rayleigh instability) and decomposed into rows of aligned ellipsoidal and spheroidal particles. The t -ZrO2 was very resistant to transformation to monoclinic symmetry. With a similar glass containing 15 wt% ZrO2, surface crystallization of α-cordierite and t -ZrO2 was accompanied by internal crystallization of t -ZrO2 dendrites. Transformation of the dendrites to mono-clinic symmetry was observed under some conditions.  相似文献   

15.
Fully dense fine-grained 32.6-vol%-zirconia-toughened alumina composites have been fabricated from nanocrystalline rapidly solidified material. A model considering the thermodynamics of the constrained t -ZrO2 m -ZrO2 phase transformation was developed for this percolated two-phase material. This analysis indicated that the grain size at which this phase transformation is thermodynamically favorable was 1.26 µm in a composite that contained 32.6 vol% ZrO2 and was stabilized with 1.50 mol% Y2O3. These results of the model compared favorably with experimental results, showing that grains of this size could be retained after heating to temperatures of as high as 1600°C. The rapidly solidified precursor was ball-milled into submicrometer powder and centrifugally cast into green specimens that were pressureless sintered to full density at temperatures as low as 1500°C. A composite containing nearly 100% t -ZrO2 was produced by pressureless sintering at 1500°C and a composite containing 45 vol% t -ZrO2/55 vol% m -ZrO2 was obtained by sintering at 1600°C. The resulting two-phase microstructures contained uniformly distributed, micrometer-size grains whose sizes are consistent with the facilitation of transformation and microcrack toughening.  相似文献   

16.
The tetragonal ( t ) and cubic ( c ) ZrO2 solid solutions in two-phase ZrO2-8 wt% Y2O3 ceramics have low and high solute content, respectively. Annealing samples sintered at 1600°C between 700° and 1400°C requires a change in the volume fraction of the coexisting phases, as well as their equilibrium Y2O3 content. The enrichment in Y2O3 content of the c -ZrO2 grains is accomplished by liquid-film migration involving the ubiquitous silicate grain-boundary phase, while the volume fraction of t -ZrO2 increases by the nucleation and growth of cap-shaped t -ZrO2 lenses. The interfaces between the c -ZrO2 matrix and the growing t -ZrO2 lenses are semicoherent.  相似文献   

17.
Tetragonal zirconia ( t -ZrO2) grains in an annealed ZrO2 8 wt% Y2O3 alloy transformed to orthorhombic ( o ) or monoclinic ( m ) symmetry by stresses induced by localized electron beam heating in the transmission electron microscope. Different transformation mechanisms were observed, depending on foil thickness and orientation of individual grains. In thicker grains (≥150 nm), the transformation proceeded by a burst-like growth of m laths, and this is believed to approximate bulk behavior. In thinner grains near the edge of the foil, usually those with a [100], orientation perpendicular to the thin-foil surface, "continuous" growth of an o or m phase with an antiphase-boundary-containing microstructure was observed. The o phase is believed to be a high-pressure poly-morph of ZrO2, which forms (paradoxically) as a thin-foil artifact because it is less dense than t -ZrO2, but more dense than m -ZrO2. In some very thin grains, the t → m transformation was thermoelastic. Furthermore, a mottled structure often occurred just before the t → m or t → o transformation, which is attributed to surface transformation. Aside from the lath formation, the observed transformation modes are a result of the reduced constraints in thin foils.  相似文献   

18.
Diffusionless tetragonal ( t' )  cubic ( c' ) phase transformation in 65-mol%-CeO2-ZrO2 was investigated around the c'-t' equilibrium temperature T0 c'-t' using powder X-ray diffraction, where c' was defined as a tetragonal or cubic phase with an axial ratio of unity. The {400} peak profile of t' -ZrO2 broadened at 860° and 900°C. This indicated that the t' -ZrO2 transformed partially into c' -ZrO2. The {400} peak profile of c' -ZrO2 also broadened at 860° and 900°C, which indicated that the c' -ZrO2 partially transformed to t' -ZrO2. The finish point of t'→c' transformation Tft'c' was investigated by annealing the t' -ZrO2 containing 30–65 mol% CeO2 at various temperatures. The T'ft'→c' line existed in the vicinity of the cubic solubility limit within the t + c two-phase region. This Tft'→c' location, which should have been located in the vicinity of T0c'-t' could not be explained by a simple regular solution model. However, it was described successfully by a thermodynamic model based on Landau's phenomenologic theory.  相似文献   

19.
In the system ZrO2–Al2O3, a new method for preparing ZrO2 solid solutions from ZrCl4 and AlCl3 using hydrazine monohydrate is investigated. c -ZrO2 solid solutions containing up to ∼40 mol% Al2O3 crystallize at low temperatures from amorphous materials. The formation mechanism is discussed from IR spectral data. The values of the lattice parameter α increase linearly from 0.5072 to 0.5105 nm with increasing Al2O3 content. At higher temperatures, transformation of the solid solutions proceeds as follows: c ( SS ) → t ( ss ) → t ( ss ) +α-Al2O3→ m +α-Al2O3. m -ZrO2–α-Al2O3 composite ceramics are fabricated by hot isostatic pressing for 2 h at 1250°C and 196 MPa. Microstructures and mechanical properties are examined, in connection with increasing Al2O3 content.  相似文献   

20.
A high-purity stoichiometric mullite precursor was obtained by hydrolysis of the alkoxides Al(OC3H7)3 and Si(OC2H2)4. Fully sintered mullite ceramics can be prepared from sol-gel powders by sintering them at 1600°C for 4 h in air with the addition of 15 to 20 Vol% ZrO2 or 1 to 3 mol% Y2O3 or both. Introduction of 1 to 3 mol% Y2O3 aids the retention of tetragonal ZrO2; the volume fraction of t -ZrO2 retained increases with increasing Y2O3 content. The maximum t -ZrO2 retained reaches 34% in a matrix of synthetic mullite with 3 mol% Y2O3, but most of this t -ZrO2 does not undergo stress-induced transformation during grinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号