首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, polystyrene/nanographite nanocomposite foams were made by different compounding methods, such as direct compounding, pulverized sonication compounding, and in situ polymerization, to understand the effect of the process variables on the morphology of the nanocomposites and their foam. The foam was made by batch foaming using CO2 as the blowing agent. Various foaming pressures and temperatures were studied. The results indicated that the cell size decreased and the cell morphology was improved with the advanced dispersion of the nanoparticles. Among the three methods, the in situ polymerization method provided the best dispersion and the resulting nanocomposite foam had the finest cell size and the highest cell density. In addition, adding nanoparticles as a nucleating agent can make foams of similar cell size and cell density at a much lower foaming pressure. This result can be explained by the classical nucleation theory. This discovery could open up a newroute to produce microcellular foams at a low foaming pressure. POLYM. ENG. SCI., 53:2061–2072, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
《Polymer Composites》2017,38(4):774-781
In this article, a series of new silica/polyimide (SiO2/PI) nanocomposite films with high dielectric constant (>4.0), low dielectric loss (<0.0325), high breakdown strength (288.8 kV mm−1), and high volume resistivity (2.498 × 1014 Ω m) were prepared by the hydrolysis of tetraethyl orthosilicate in water‐soluble poly(amic acid) ammonium salt (PAAS). The chemical structure of nanocomposite films compared with the traditional pure PI was confirmed by Fourier transform infrared spectroscopy and X‐ray diffraction patterns. The results indicated that both the PAAS and the polyamide acid (PAA) material were effectively converted into the corresponding PI material through the thermal imidization and the amorphous SiO2 was embedded in the nanocomposite films without structural changes. Thermal stability of the nanocomposite films was increased though mechanical property was generally decreased with increasing the mass fraction of SiO2. All the nanocomposite films exhibited an almost single‐step thermal decomposition behavior and the average decomposition temperature was about 615°C. It was concluded that the effective dispersion of SiO2 particles in PI matrix vigorously improved the comprehensive performance of the SiO2/PI nanocomposite films and expanded their applications in the electronic and environment‐friendly industries. POLYM. COMPOS., 38:774–781, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
A series of microcellular silicone rubber foams were prepared by supercritical carbon dioxide (scCO2). The effect of reinforcing agent (silica) on the rheological behavior, cellular morphology and nucleation of silicone rubber composites was investigated. The results show that the silica not only acts as reinforcing agent but also plays an important role in the cellular nucleation. When the content of silica increases from 40 phr to 70 phr, the range of the calculated surface tension of silicon rubber composites/scCO2 (γmix) and radius of the critical nucleus (r*) are 158.95~1,092.74 nN/m and 14.45–99.34 nm, respectively. Meanwhile, aggregated silica has good heterogeneous nucleation as the diameter of aggregated silica particles is approximate to twice r*. The smallest cell diameter and the highest cell density of the silicone rubber foam can reach to 708 nm and 1.02 × 1011 cells/cm3, which indicate that the silicone rubber nanofoams can be obtained by means of the supercritical foaming technology. POLYM. ENG. SCI., 59:5–14, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
Linda L. Hussami  Lars Kloo 《Carbon》2010,48(11):3121-3130
Polyhedral silica nanofoam (PNF-SiO2) analogues of dry soap froths with minimal surface area were used as templates for making polyhedral carbon nanofoams (PNF-C). Furfuryl alcohol or triblock copolymers were used as carbon sources. The volume of carbon precursor relative to the internal pore volume of PNF-SiO2’s was systematically varied between 50% and 100% in order to investigate the effect of filling fraction on internal structure of the corresponding PNF-C’s. Transmission electron microscopy, small-angle X-ray scattering and nitrogen physisorption were used to characterize the samples. To aid the interpretation of the experimental data, a model for X-ray scattering from spherical shells was used to approximate scattering from the polyhedral foam cells. PNF-C’s cast from the PNF-SiO2’s, displayed the characteristic Plateau borders of minimal surface area foams defining interconnected, slit-like pore systems at all filling fractions. At relatively high filling fractions, inverse foam structures were obtained with the slit-like pores systems interpenetrating aggregated, close-packed, relatively low density polyhedral carbon nanoparticles co-joined by carbon struts. At relatively low filling fractions, polyhedral carbon nanofoams with relatively thin, fused double-wall structures and interconnected polyhedral pore systems were obtained.  相似文献   

5.
This study is an effort to modify conventional batch processes to be able to produce polymeric foams with high cell density and small cell size, which cannot be reached by conventional batch foaming processes. This has been attained by controlling the foaming temperature and controlled stabilization of the cellular structure. The method was tested for both with and without addition of nanosized particles in polymeric matrix. The desired morphologies were obtained using a novel apparatus with the capability of instantaneous pressure drop and controlling stabilization of the foam structure. The design of the said apparatus was based on the idea that in a foaming process, nucleation is the predominant mechanism that determines the final foam structure. The produced foam products have uniform structures without any unfoamed skin. Results show that the control of the foaming temperature and the cell stabilization are the predominant factors in adjustment of the final foam morphology. A wide range of microcellular structures with cell densities between 107 and 1012 bubbles/cm3 and average cell sizes of 500 nm–20 μm were produced. Foaming of polystyrene‐nano‐silica nano‐composites with the same method showed that nanoparticles act as nucleating agent and increase the cell density in the final foam products compared with that of neat polystyrene. POLYM. ENG. SCI., 50:1558–1570, 2010. © 2010 Society of Plastics Engineers  相似文献   

6.
By pressure infiltrating pre-ceramic polymer polycarbosilane (PCS) into thermally and mechanically stable silica nanofoam, followed by PCS pyrolysis and silica template removal, synthesis of large-scale monolithic SiC nanofoams has been accomplished. Tailoring of the porosity and cell size of the SiC nanofoam has been realized by dissociating the porosity and pore size of the silica nanofoam. Because of the surface hardening and increased surface volume ratio of deformable nanopores, with the same porosity, the decrease of nanopore size has led to an increase in the quasi-static and dynamic indentation resistance for SiC nanofoams.  相似文献   

7.
8.
Development of advanced dielectric materials with both high-electric energy density and high-temperature resistant attributes is highly desirable in modern electronics and electrical systems. Herein, a series of polyimide (PI)-based sandwich-structured dielectric nanocomposite films have been attempted to develop the advanced high-temperature resistant capacitor films, wherein the boron nitride nanosheets/PI nanocomposite acts as the outer layers and the zinc oxide (ZnO)/PI as the middle layer. Benefitting from the merits of both fillers and the unique structure, the resulting nanocomposite films can simultaneously achieve both high-dielectric constant and high-breakdown strength, as well as low-electrical conduction loss, thus leading to improved discharged energy densities (Ue) and charge/discharge efficiency (η) at elevated temperatures. It is found that the sandwich-structured nanocomposite film with 0.4 vol% ZnO (0.4ZnO/PI-S) can deliver a maximum Ue of 5.29 J cm−3 at 400 MV m−1 and 150°C, which is about 1.9 times that of the pristine PI film. Moreover, outstanding dielectric stability over 10,000 charge/discharge cycles has been demonstrated in such PI-based sandwich-structured nanocomposite films at 150°C and 200 MV m−1. This research may provide a new paradigm to explore polymer nanocomposites having excellent energy storage and efficiency at elevated temperatures.  相似文献   

9.
Reinforcing the cavity cell walls of polymer foams using nanoparticles can offer a new era for the property‐structure‐processing field in the development of functionalized ultra‐light components and devices manufactured from foam. When the nanoparticles are exfoliated in polymers, the viscosity substantially increases and thus mixing or foaming usually becomes almost impossible. We use CO2 supercritical fluid (CO2 SCF) for the mixing and foaming of poly(ethylene‐vinyl acetate) copolymer (EVA) with montmorillonite (MMT) nanoplatelets. The in situ evaporation of CO2 induces robust cavity cells of the EVA/MMT nanocomposite foam in a stable form of spherical shapes, which are seldom achieved by other methods. As the bubble grows and becomes stabilized in CO2 SCF, the exfoliated MMT nanoparticles are aligned at the cell walls by the Gibbs adsorption principle to minimize the surface energy at the gas–liquid interface and increase the rupture strength of the cavity walls. It is demonstrated that the developed methodology can be successfully used for foaming EVA containing high vinyl acetate (VA) content (>40%). Since EVA is too soft to construct cell walls of foam using conventional methods, the applicability of the developed methodology is extensively broadened for superior adhesion and compatibility with other materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46615.  相似文献   

10.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   

11.
This paper aims at elucidating some important parameters affecting the cellular morphology of poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposite foams prepared with the supercritical CO2 technology. Prior to foaming experiments, the SAN/CO2 system has first been studied. The effect of nanoclay on CO2 sorption/desorption rate into/from SAN is assessed with a gravimetric method. Ideal saturation conditions are then deduced in view of the foaming process. Nanocomposites foaming has first been performed with the one-step foaming process, also called depressurization foaming. Foams with different cellular morphology have been obtained depending on nanoclay dispersion level and foaming conditions. While foaming at low temperature (40 °C) leads to foams with the highest cell density (∼1012-1014 cells/cm3), the foam expansion is restricted (d∼0.7-0.8 g/cm3). This drawback has been overcome with the use of the two-step foaming process, also called solid-state foaming, where foam expansion occurs during sample dipping in a hot oil bath (d∼0.1-0.5 g/cm3). Different foaming parameters have been varied, and some schemes have been drawn to summarize the characteristics of the foams prepared - cell size, cell density, foam density - depending on both the foaming conditions and nanoclay addition. This result thus illustrates the huge flexibility of the supercritical CO2 batch foaming process for tuning the foam cellular morphology.  相似文献   

12.
Intercalated and exfoliated polystyrene/nano‐clay composites were prepared by mechanical blending and in situ polymerization respectively. The composites were then foamed by using CO2 as the foaming agent in an extrusion foaming process. The resulting foam structure is compared with that of pure polystyrene and polystyrene/talc composite. At a screw rotation speed of 10 rpm and a die temperature of 200°C, the addition of a small amount (i.e., 5 wt%) of intercalated nano‐clay greatly reduces cell size from 25.3 to 11.1 μm and increases cell density from 2.7 × 107 to 2.8 × 108 cells/cm3. Once exfoliated, the nanocomposite exhibits the highest cell density (1.5 × 109 cells/cm3) and smallest cell size (4.9 μm) at the same particle concentration. Compared with polystyrene foams, the nanocomposite foams exhibit higher tensile modulus, improved fire retardance, and better barrier property. Combining nanocomposites and the extrusion foaming process provides a new technique for the design and control of cell structure in microcellular foams.  相似文献   

13.
Flexible dielectric materials with high electric energy density and high-temperature resistant characteristic are of great importance for modern electronics and electrical systems. Herein, two-dimensional molybdenum disulfide (MoS2) nanosheets were efficiently produced via liquid-phase exfoliation and then incorporated into polyimide (PI) to prepare MoS2/PI dielectric nanocomposites. Compared to the pristine PI, MoS2/PI nanocomposite films exhibited much larger dielectric permittivity while their dielectric losses still maintained relatively low levels. On the other hand, the Weibull breakdown strength of these nanocomposite films initially increased and then decreased with the increase in the MoS2 content and gave rise to a maximum value of 395 MV m−1 at 1 vol % loading. Combination of the improved dielectric permittivity and breakdown strength makes the MoS2/PI nanocomposite film with 1 vol % MoS2 possess an elevated energy density of about 3.35 J cm−3. Moreover, good tensile and thermal properties of the nanocomposite films hold great promise for their applications in high-temperature and harsh conditions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47991.  相似文献   

14.
We investigate the production and characterization of foams prepared from polypropylene (PP) as well as PP–silica nanocomposites containing different loadings of nano‐silica. This study was carried out to investigate the mechanisms underlying the production of foams with a regular cell structure through the use of nano‐scale fillers. Foaming was carried out in batch mode using an autoclave with CO2 as the physical blowing agent; high pressures of the order of 14 MPa were achieved through a combination of active pressurization and the use of high foaming temperatures. The resulting PP nanocomposite foams were characterized in detail to quantify the effect of the nano‐silica loading on the foam density and mechanical, morphological and thermal properties. The addition of nano‐silica in PP resulted in the improvement of foam quality – as assessed from the well‐defined and regular cell structures with absence of cell coalescence – as well as an increase in expansion ratio and decrease in foam density. Careful analyses of trends in cell size, cell density and expansion ratio of the foams were correlated with measurements of melt rheology and nano‐filler morphology of the unfoamed specimens in order to identify subtle details regarding the role of silica nanoparticles in improving foam quality. © 2019 Society of Chemical Industry  相似文献   

15.
A simple method for obtaining silica foam has been developed by combining sol-gel reaction and mechanical foaming without added organic pore formers, in order to reduce generation of CO2 and harmful gases by decomposition of the organic compounds. The silica foam was prepared by mechanically foaming the silica sol and controlling the viscosity change and gelling. The gelation time of the silica sol can be varied from 10 minutes to 3 hours by changing the pH, temperature and concentration of the surfactant added as a foam stabilizer. The dried silica gel foam was calcined at 600°C then fired at 1000°C to obtain sintered silica foam. The porosity and average pore size of the silica foam was 84% and 140 m, respectively. The bending strength and gas permeability of the sintered silica foam was 2.4 MPa and 9.4 × 10–11 m2, respectively.  相似文献   

16.
The comparative studies for the effect of vinyl-modified silica (VMS) and raw silica (RS) particles on the cell structure, insulation (dielectric and thermal transport) properties, and thermal stability of thermoplastic PMMA-silica nanocomposite (PSN) foams are described. The VMS particles were synthesized by the conventional acid-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) in the presence of 3-(trimethoxysilyl)propyl methacrylate (MSMA) molecules. The as-prepared VMS particles were then characterized through fourier transform infrared (FTIR), solid-state 13C-nuclear magnetic resonance (13C-NMR) and 29Si-NMR spectroscopy. Subsequently, the PSN materials were prepared via in-situ bulk polymerization. The dispersion of silica particles in PMMA matrix was observed by transmission electron microscopy (TEM) studies. Gel permeation chromatography (GPC) was used to determine the molecular weights of as-prepared samples. The PSN materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The effect of VMS and RS particles on the cell structure, insulation properties and thermal stability of PSN foams were investigated by scanning electron microscopy (SEM), LCR meter, Transient plane source (TPS) technique and thermal gravimetric analysis (TGA), respectively. The better dispersion capability of VMS particles in PSN foams was found to lead enhanced nucleation efficiency, thermal stability and decreased dielectric constant (ε′), dielectric loss (ε″) and thermal conductivity (k). POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
The demand for light-weight, high-performance polymeric foam material, and part soars to meet the requirements of the national economy and the high-tech industries. Currently, foaming technologies are inadequate to fabricate these advanced materials. In this study, polyetherimide/carbon fiber (PEI/CF) foam was prepared by pressure-induced batch foaming technology with the supercritical CO2 (scCO2) and ethanol (EtOH) as the physical foaming agent and co-foaming agent, respectively. The presence of EtOH was verified to enhance the solubility of scCO2 and increase the interaction energies between PEI molecular chain and CO2/EtOH foaming agent, the expansion ratio of PEI pellets, as a result, was effectively improved from 1.3 to 7.5. Using the stainless mold-assisted sinter molding, numerous PEI or PEI/CF pellets was simultaneously foamed and squeezed into three-dimensional (3D) geometry shape. The cell morphology tests indicated that the CF, served as the nucleating agent, cannot only facilitate the formation of denser microcellular structure, but also improve the mechanical performance of the final foam product. As a model system, PEI/CF foam product with a density of 320 kg/m3 was successfully obtained, the compression and tensile strength of which were 11.6 and 9.7 MPa, respectively, as proved by the mechanical performance measurements.  相似文献   

18.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
The prime goal of this work is to synthesize free‐standing polyvinyl alcohol (PVA) films doped with Ag2S, CuS, Ag2S/CuS alloy, and Ag2S/CuS nanocomposites through the sol–gel route. The dependence of Ag2S content in the PVA nanocomposite films on both the real and imaginary parts of the complex permittivity and loss tangent values was examined. An enhanced dielectric constant was achieved with minimum dielectric loss due to the insulating silica layer. By changing the Ag2S content in Ag2S/CuS PVA films, the AC conductivity is improved with pure Ag2S nanoparticles exhibiting highest values of the order of 10?6?10?9 S/cm. The Cole–Cole parameters were calculated and the semicircles observed in the plots indicate a single relaxation process. The results suggest that these composite films are potential materials for embedded capacitor applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43568.  相似文献   

20.
In this work, a novel melamine‐formaldehyde‐Fe3O4 foam was prepared from a mixture containing melamine‐ethanolamine‐formaldehyde resin, melamine‐glycol‐formaldehyde resin and carboxylated Fe3O4 nanoparticles by microwave foaming method. The two resins were characterized by 13C‐NMR, respectively. The structures of foams, mechanical and fire‐retardant properties were experimentally characterized separately by scanning electron microscopy, universal testing machine, limit oxygen index, thermogravimetry‐differential thermal analysis, and Fourier transform infrared spectra. The effects of the resin viscosity, emulsifier, nucleating agent, curing agent, silicone oil, microwave heating time and blowing agent on the structure of foam were investigated. Results showed that the properties of foam were decided by not only the molecular structure but also structure of foam, and the carboxylated Fe3O4 nanoparticles can improve the toughness and flame retardant properties of magnetic foam obviously from both aspects. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2688–2697, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号