首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel melt‐mixing method and corresponding mixer for polymer materials are reported. The effects of carbon nanotube (CNT) loading, rotation rate and mixing time on the morphology and properties of CNTs/ultrahigh‐molecular‐weight polyethylene (UHMWPE) nanocomposites were experimentally investigated in detail using the mixer. Homogeneous dispersion of CNTs in intractable UHMWPE is successfully realized without the aid of any additives or solvents. Differential scanning calorimetry results showed that the crystallinity increases 13.8% when 1 wt% of CNTs is added into the composites. The maximum crystallinity increased 13.5% and then decreased slightly with increasing rotation rate. The mixing time had little effect on crystallinity. Rheological tests reveal that the effect of CNT loading on the storage modulus/complex viscosity is a result of competition between the viscosity decrease due to the selective adsorption of UHMWPE onto CNT surfaces and the viscosity increase caused by the formation of an interconnected polymer–nanotube network. The storage modulus/complex viscosity decreased with increasing rotation rate/mixing time. This is a synergic result of the selective adsorption of the long molecular chains onto the CNT surface and their thermomechanical degradation. The results showed that the mixing process dominated by elongation stress is a simple, efficient green way to prepare CNTs/UHMWPE nanocomposites via melt mixing. © 2018 Society of Chemical Industry  相似文献   

2.
Using conventional mixing techniques, the mechanical properties of prepared carbon nanotube (CNT)/polymer composites are not impressive enough, because of their aggregation problem at a high loading of CNTs. In this article, high mechanical performance ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites with high loading of multiwalled CNTs were successfully fabricated by a new manufacturing technique. Specifically, the tensile strength and storage modulus at 25 °C of UHMWPE nanocomposites with 32 wt % of nanotubes prepared by the novel technique reaches 107.6 MPa and 6.0 GPa, respectively, about 4.7 times and 5.0 times of that of pure UHMWPE resin, which are also very high experimental results compared with polyethylene nanocomposite prepared by traditional hot-compression techniques. These attractive results suggest that the high-loading CNTs without sacrificing their dispersion and the impregnation quality of polymer-impregnated buckypapers are essential for fabricating CNTs/polymer composites with superior mechanical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48667.  相似文献   

3.
Crystallization and stress relaxation behaviors of ultrahigh molecular weight polyethylene (UHMWPE) doped with carbon nanotubes (CNTs) have been investigated by X‐ray diffraction, differential scanning calorimetry (DSC) and single strand strength testing. Compared with UHMWPE, crystallinity of the UHMWPE/CNT composites significantly increases from 71.95 to 82.92% while crystallization activation energy decreases from 679.4 to 535.8 KJ/mol. CNTs as the nucleating agent changes the nucleation type of UHMWPE from homogenous to heterogeneous and accelerates the nucleation and growing of crystalline grains. Above crystallization changes also affect the mechanical properties of the UHMWPE/CNTs composites. Stress relaxation testing indicates that the relaxation stability of UHMWPE/CNT composites increases while the relaxation rate decreases. J. VINYL ADDIT. TECHNOL., 24:229–232, 2018. © 2016 Society of Plastics Engineers  相似文献   

4.
The influences of the dispersion level of carbon nanotubes (CNTs) and functionalized CNTs on the transmittance properties of ultrahigh‐molecular weight polyethylene (UHMWPE) gel solutions and on ultradrawing properties of their as‐prepared fibers are reported. The transmittance properties suggest that the dispersion level of functionalized CNTs in UHMWPE/functionalized CNTs gel solution is significantly better than plain CNTs in UHMWPE/CNTs gel solutions. The orientation factors, achievable draw ratios, tensile strength (σf), and modulus (E) values of UHMWPE/CNTs (FxCy) and UHMWPE/functionalized CNTs (FxCf‐y) as‐prepared fiber specimens reached a maximum value as their CNT and functionalized CNT contents approached optimum contents at 0.00015 and 0.0001 wt%, respectively. The σf and E values of both FxC0.0012 and FxCf‐0.001 series fiber specimens prepared at their optimum CNT and functionalized CNT contents reached another maximum as their UHMWPE approached optimum UHMWPE concentration of 1.7 wt%. Possible reasons accounting for these interesting properties are proposed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
The different filler effects of identical nitrile‐functionalized carbon nanotubes (CNTs) and graphene nanoplatelets (GNs) in a poly(arylene ether nitrile) (PEEN) matrix were investigated. PEEN/CNT and PEEN/GN composites were prepared by a facile solution‐casting method and systematically investigated for their differences in morphological, thermal and rheological properties. In the PEEN matrix GNs contact one another in a plane‐to‐plane manner, while CNTs are separated. Compared with PEEN/CNT composites, PEEN/GN composites below 2 wt% filler content exhibited higher thermal stability. Rheological properties of the resulting composites indicated that PEEN/GN composites were more sensitive to strain and exhibited higher η*, G′ and G″ than PEEN/CNT composites. The rheological percolation for CNTs is over 2 wt%, higher than that for GNs (around 1 wt%). All these differences originate from the different dimensions and structures of CNTs and GNs: GNs with a flake‐like structure and larger surface area can have stronger physical and interfacial interactions with the polymer matrix. This work gives a comparative view of the different filler effects that functionalized CNTs and GNs can have in the polymer host. With identical processing technology, GNs can show a stronger filler effect than CNTs. © 2012 Society of Chemical Industry  相似文献   

6.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
In our previous study, we have prepared a novel antibacterial ultra‐high molecular weight polyethylene/chlorhexidine acetate‐montmorillonoid (UHMWPE/CA‐MMT) composites and examined its crystallization process and kinetics [1]. In this work, the rheological behaviors of pure UHMWPE, UHMWPE/MMT, UHMWPE/CA, and UHMWPE/CA‐MMT were characterized. The results showed that MMT can increase the viscosity of the polymer composites and CA can act as a plasticizer in the composites. Compared with UHMWPE/CA, UHMWPE/CA‐MMT had lower η*, G′, and G″. The TGA result indicated that CA‐MMT has higher thermostability than CA. Hence, CA‐MMT has the lower thermal decomposition ratio at high temperature than CA when it is blended with polymer. The TGA result could be used to explain that UHMWPE/CA‐MMT composites had better plasticizer effect than UHMWPE/CA composites. POLYM. COMPOS., 36:47–50, 2015. © 2014 The Authors Polymer Composites published by Wiley Periodicals, Inc.  相似文献   

8.
Three‐dimensional carbon nanohybrids constructed by reduced graphene oxide (rGO) and carbon nanotubes (CNTs) are prepared via simultaneous hydrothermal and chemical reduction reactions. The macroscopic rGO/CNTs monolith is used as the preformed reinforcement for polystyrene (PS) composites to function as the continuous conductive pathway. During hydrothermal reaction, interconnected network consisting of rGO and CNTs, driven by the hydrophobic and π‐π interactions, is formed and then frozen by the following freeze‐drying processing. Fourier transform infrared and X‐ray diffraction results confirm that CNTs play an important role in tuning the amphiphilicity and pore structure of the as‐prepared rGO/CNTs nanohybrids. rGO/CNTs/PS composites prepared via vacuum‐assisted impregnation process exhibit the highest electrical conductivity of 1.21 × 10?3 S m?1, which is 11 orders of magnitude higher than that of neat PS. The functional synergies of rGO and CNTs are identified to establish an efficient route for improving the electrical property of polymer based composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45054.  相似文献   

9.
In this work, the use of a laboratory twin-screw extruder was evaluated to process ultrahigh molar mass polyethylene and composites with carbon nanotubes (CNTs). Commercial polymer samples with lubricant (1%) and different percentages (0.01%, 0.05%, and 0.1%) of pure, oxidized, and chemically surface treated multi-walled carbon nanotubes (MWCNTs) were evaluated. The results showed that polymer melting and crystallization temperatures were not affected by CNTs, although an increase in the degree of crystallinity in all nanocomposites was observed along with a decrease in crystal size. Therefore, CNTs behaved as nucleating agents. All ultrahigh molar mass polyethylene (UHMWPE)/CNT samples showed increased initial degradation temperature, although this was not very great when introducing acetylated and stearic acid modified CNTs. Both oxidized CNTs and stearic acid CNTs did not markedly improve the composites' mechanical properties. Therefore, the nanocomposites containing pure CNTs and most of those with acetylated CNTs resulted in higher reinforcement for UHMWPE. The addition of the lubricant allowed the polymer matrix to be processed in the extruder, whereas the increase in CNT content in UHMWPE improved the stiffness of the material. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47459  相似文献   

10.
Multiwalled carbon nanotubes (CNTs) functionalized with hindered phenol moieties are dispersed in ultra‐high molecular weight polyethylene (UHMWPE), and the stabilizing action of the antioxidant (AO) functionalized CNTs (AO‐f‐CNTs) is studied through a combination of rheological and spectroscopic (FT‐IR) analyses. The effectiveness of two alternative compounding methods, namely hot compaction (HC) and melt mixing (MM), is compared. The combination of high temperature and mechanical stress experienced during MM brings about noticeable degradation phenomena of the matrix already in the course of the compounding step. Differently, the milder conditions of the HC process preserve the stability of the polymer, making this method preferable when dealing with highly viscous matrices. In addition, HC guarantees a better CNT dispersion, allowing for the maximization of the stabilizing action of the AO grafted on the nanotubes. As a result, the HC samples exhibit improved thermo‐oxidative resistance despite the very low amount of AO grafted onto the CNTs. Besides demonstrating the effectiveness of our AO‐f‐CNTs as stabilizers for polymer matrices, our results prove that CNTs can serve as a support on which grafting specific functional molecules to be dispersed in a host polymer matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42420.  相似文献   

11.
A carbon nanotube (CNT)/poly(methyl methacrylate) (PMMA)/ultrahigh molecular weight polyethylene (UHMWPE) composite containing a double‐segregated structure was formalized by means of a facile mechanical mixing technology. In the composite, the CNTs were decorated on the surfaces of PMMA granules, and the CNTs decorated granules formed the continuous segregated conducting layers at the interfaces between UHMWPE particles. Morphology observations confirmed the formation of a specific double‐segregated CNT conductive network, resulting in an ultralow percolation threshold of ~0.2 wt %. The double‐segregated composite containing only 0.8 wt % CNT loading exhibited a high electrical conductivity of ~0.2 S m?1 and efficient electromagnetic shielding effectiveness of ~19.6 dB, respectively. The thermal conductivity, temperature‐resistivity behaviors, and mechanical properties of the double‐segregated composites were also studied. This work provided a novel conductive network structure to attain a high‐performance conducting polymer composite at low filler loadings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39789.  相似文献   

12.
A new technique to show good electroconductivity was proposed using carbon nanotube (CNT) localization in cocontinuous immiscible polymer blends comprising ultrahigh-molecular-weight polyethylene (UHMWPE) and polycarbonate (PC). When UHMWPE was added to PC/CNT in the molten state in an internal mixer, CNTs started moving to the UHMWPE phase. However, CNTs require a long time to diffuse into the UHMWPE phase owing to a low diffusion constant. Consequently, they remain at the interface between PC and UHMWPE. When the blends have cocontinuous structure, the localized CNTs at the phase boundary act as a conductive path, leading to a good electroconductivity. Although a similar morphology is obtained by adjusting the balance of interfacial tensions among polymers and CNT, it is difficult to find a system showing appropriate interfacial tensions. As the present method is applicable to various polymer blends, it will be an important technique to prepare a conductive nanocomposite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48676.  相似文献   

13.
Improvements in carbon nanotube (CNT) dispersion and subsequent mechanical properties of CNT/poly(phenylsulfone) (PPSF) composites were obtained by applying the supercritical CO2 (scCO2)‐aided melt‐blending technique that has been used in our laboratory for nanoclay/polymer composite preparation. The preparation process relied on rapid expansion of the CNTs followed by melt blending using a single‐screw extruder. Scanning electronic microscopy results revealed that the CNTs exposed to scCO2 at certain pressures, temperatures, exposure time, and depressurization rates have a more dispersed structure. Microscopy results showed improved CNT dispersion in the polymer matrix and more uniform networks formed with the use of scCO2, which indicated that CO2‐expanded CNTs are easier to disperse into the polymer matrix during the blending procedure. The CNT/PPSF composites prepared with scCO2‐aided melt blending and conventional melt blending showed similar tensile strength and elongation at break. The Young's modulus of the composite prepared by means of conventional direct melt blending failed to increase beyond the addition of 1 wt% CNT, but the scCO2‐aided melt‐blending method provided continuous improvements in Young's modulus up to the addition of 7 wt% CNT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
As a result of van der Waal's interactions, carbon nanotubes (CNTs) tend to assemble into bundle/rope structures. It is essential to de‐bundle and exfoliate CNTs in polymer solutions in order to utilize their reinforcement potential as far as possible. In this study, a variety of different processing conditions were used to prepare polyacrylonitrile/CNTs composite solutions. The CNT bundle diameter, length, and macro‐scale dispersion homogeneity in those solutions were compared. It was observed that the CNT type, solvent type, and polymer concentration were important factors to determine the CNT bundle sizes in the solutions. The results are expected to be beneficial to obtain well‐dispersed polymer/CNT nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42177.  相似文献   

15.
Four binary polymer blends containing poly [ethylene‐co‐(acrylic acid)] (PEAA) as one component, and poly(4‐vinyl phenol‐co‐2‐hydroxy ethyl methacrylate) (P4VPh‐co‐2HEMA) or poly(2‐ethyl‐2‐oxazoline) (PEOx) or poly(vinyl acetate‐co‐vinyl alcohol) (PVAc‐co‐VA) or poly (vinylpyrrolidone‐co‐vinyl acetate) (PVP‐co‐VAc) as the other component were prepared and used as a matrix of a series of composite materials. These binary mixtures were either partially or completely miscible within the composition range studied and were characterized by differential scanning calorimetry (DSC) and Fourier transformed infrared spectroscopy (FTIR). Carbon nanotubes (CNTs) were prepared by a thermal treatment of polyester synthesized through the chemical reaction between ethylene glycol and citric acid over an alumina boat. High resolution transmission electron microscopy (HRTEM) was used to characterize the synthesized CNTs. Films of composite materials containing CNTs were obtained after evaporation of the solvent used to prepare solutions of the four types of binary polymer blends. Young's moduli of the composites were obtained by thermomechanical analysis at room temperature. Only one glass transition temperature was detected for several compositions on both binary blends and the composite material matrices. Evidence of hydrogen bond formation was recorded for both miscible blends and composite materials. The degree of crystallinity and Young's moduli of the CNT‐polymer composites increased compared to the single polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
Ultra high molecular weight polyethylene (UHMWPE) is extensively used as a material in various high‐end applications with superior mechanical properties. Carbon nanotubes (CNTs) reinforced UHMWPE (CNT/UHMWPE) nanocomposite is a promising material that can compensate for the weak durability of UHMWPE. In this study, multiwalled carbon nanotubes were oxidized and silanized using acid mixture and 3‐aminopropyltriethoxysilane, respectively, to improve the interfacial strength between CNTs and UHMWPE. The CNT/UHMWPE nanocomposite was fabricated using these oxidized and silanized CNTs. The treatment effect of CNTs on the wear behavior of the CNT/UHMWPE nanocomposites was investigated through wear tests. The oxidization and silanization of CNTs were confirmed by infrared spectroscopy. Scanning electron microscope analysis showed that the silane‐treated CNT/UHMWPE nanocomposites showed better dispersion and interfacial adhesion between UHMWPE and CNTs becaue of the newly formed functional groups on the CNTs. The friction coefficient and wear rate of silanized CNT/UHMWPE nanocomposite were also found to be lower than those of raw UHMWPE and oxidized CNT/UHMWPE nanocomposite. CNTs were functionalized using oxidation and silanization methods to improve the interfacial adhesion between CNTs and UHMWPE. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

17.
Using a noncovalent functionalization strategy, hyperbranched polyborate (HBb) acts as a solubilizer for carbon nanotubes (CNTs), and a stable HBb‐CNT dispersion in N‐methyl‐pyrrolidone was produced. The thermal properties of the resulting HBb‐CNT/polybenzoxazine (B‐BOZ) composites and their carbonized structures were investigated. Scanning electron microscopy demonstrated that the fracture surface of HBb‐CNT/B‐BOZ composites was rather rough and plenty of plastic deformation was exhibited. Thermogravimetric analysis indicates an improvement in the thermal stability of the composite with CNTs, especially that of 2.0 wt% CNT modified composite. The increase in the thermal stability is due to the good nanotube dispersion and the effective polymer‐CNT interaction. Graphite‐like boron carbonitride ceramic compounds were found after the composites were carbonized at 1,100°C for 2 h, and there was more B‐C, B‐N, and C‐N bonds in the carbonized HBb‐CNT/B‐BOZ composite than that of HBb/B‐BOZ composite. The result implied that CNTs can promote the ceramic process of HBb/B‐BOZ composite, and the strategy of introducing ceramic precursor into polymer composites may be useful to improve their ablation properties. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
CNT/Al–Cu composites were fabricated by mixing of Al powders and CNT/Cu composite powders which were prepared by molecular level mixing process. The CNT/Al–Cu–Cu composites show a microstructure with a homogeneous dispersion of CNTs in the Al–Cu matrix and had a 3.8 times increase of yield strength and 30% increase of elastic modulus compared to Al–Cu matrix. The strengthening mechanism of CNT/Al–Cu composites was discussed by controlling the aspect ratio of CNTs and it was thought that the CNT/Al–Cu composites were strengthened by both load transfer from the Al matrix to the CNTs and dispersion strengthening of damaged short CNTs. At the same time, the addition of CNTs increases the grain refinement effect of the Al–Cu matrix which results in a grain size strengthening mechanism of the CNT/Al–Cu composites.  相似文献   

19.
Thermoplastic polyurethane (TPU)/multi‐walled carbon nanotubes (CNT) nanocomposites were prepared by twin‐screw extrusion and micro injection molding. The electrical conductivity of micro injection molded polymer nanocomposites exhibits a low value and uneven distribution in the micromolded samples. Real‐time tracing of electrical conductivity was conducted to investigate the post thermal treatment on the electrical conductivity of microinjection molded composites. The results show that postmolding thermal treatment leads to a significant increase in the electrical conductivity by over three orders of magnitude for 5 wt % CNT‐filled TPU composites. In‐situ Transmission electron microscopy confirms the conductive CNT network does not change at the micron/sub‐micron scale during thermal treatment. TEM image analysis by a statistical method was used to determine the spatial distribution of CNT in the sample and showed that the average distance between adjacent CNT reduced slightly at the nanometer scale after postmolding thermal treatment. A new conductive mechanism is proposed to explain the enhancement of electrical conductivity after thermal treatment, i.e. micro‐contact reconstruction of adjacent CNT in the polymer matrix through annealing‐induced relaxation of interfacial residual stress and strain. Raman spectra and small angle X‐ray scattering curve of annealed samples provide supporting evidence for the proposed new conductive mechanism. The electron tunneling model was used to understand the effect of inter‐particle distance on the conductivity of polymer composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42416.  相似文献   

20.
Carbon nanotubes (CNTs) and barium titanate (BaTiO3) (BT) were simultaneously introduced into the immiscible blend poly(ethylene‐co‐vinyl acetate)/thermoplastic urethane (EVA/TPU), and the EVA/TPU/CNT/BT quaternary polymer composite blends with core–shell structured island TPU domain were successfully prepared, in which CNTs in the TPU domain act as the core and the BT spheres at the interface of the TPU and EVA act as the shell. A core–shell structured island can lead to the formation of micro‐capacitors and further accumulate electron storage owing to the incorporation of CNTs and BT; on the other hand, a BT shell can be assembled along the TPU spheres, reducing the possibility of formation of a conductive CNT network, resulting in suppressed dielectric loss. Therefore, CNTs and BT were tailor‐made into blend composites with a core–shell structured domain, which can achieve an increased dielectric constant by 176% and decreased low dielectric loss by 80% compared with the blend composites with only CNTs in the TPU domain. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号