首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Fatigue analysis of offshore platforms subject to sea wave loadings   总被引:1,自引:0,他引:1  
The fatigue damage calculation for random loading on offshore platforms takes the form of a rainflow analysis of the dynamic response of individual members to various sea states. This procedure is lengthu and consequently this paper attempts to provide a theoretical method for determining random load fatigue damage. This dynamic response for many joints leads to a broad band random loading but despite this, previous theoretical methods have simplified the loading to narrow band. This has not been done in the present case; instead, an analysis based on broad band random loading has been produced. This theoretical approach gives a fatigue life estimate which is slightly (6.6%) more conservative, for a typical example, than a rainflow analysis.  相似文献   

2.
This paper deals with the problem of fatigue strength assessment of welded joints subjected to multiaxial loading. Three-dimensional solid modelling and linear elastic stress analysis, by means of numerical methods, are used to investigate the local stress field at weld toes and roots, geometrically regarded as sharp notches. Starting from the stress field obtained from a linear elastic analysis and taking advantage of the so-called implicit gradient approximation, an effective stress index connected with the material strength is calculated. In particular, there will be an investigation into the possibility of applying the implicit gradient approach to welded structures, under both uniaxial and multiaxial loading conditions, by introducing a multiaxial criterion into the implicit gradient framework. The multiaxial criterion consists of an improvement of the well-established Crossland-like criteria. It will deal with multiaxiality caused by external loadings as well as multiaxial stress fields caused by severe stress raisers. In order to validate the devised approach, theoretical fatigue damage estimations are compared with experimental data. In particular, the proposed approach is applied to a series of applicative examples taken from scientific literature and related to welded joints subjected to uniaxial or in-phase multiaxial fatigue loading.  相似文献   

3.
An assessment of a fatigue fracture mechanisms procedure for fatigue life estimation of welded joints in offshore structures resulting from studies of variable amplitude loading, stress analysis and crack growth measurement in T-joints is presented.  相似文献   

4.
This paper presents a new approach to assess time-dependent corrosion fatigue damage of welded joint considering the coupling effect between mechanical factor and corrosion factor. The high stress region around weld will accelerate corrosion and be more likely to induce nonuniform corrosion of welded joint. And the effect of loading on corrosion behavior of the steel in NaCl solution was investigated. The synergistic effect between applied elastic stress and chemical attack on Q235 steel was evaluated by electrochemical experiments. A side longitudinal of ship structure is selected as a case study. Time-dependent stress concentration factor of welded joint as a function of corrosion deterioration was analyzed, and the iterative process of stress and corrosion degeneration of plate thickness was used to simulate coupling effect basing on the results of experiment. The hot spot stress approach was adopted to calculate the fatigue damage. It is revealed that the nonuniform corrosion could influence fatigue damage of welded joint, and that impact will be more and more significant with the growth of corrosion year.  相似文献   

5.
In this study, the effects of friction stir spot weld arrangements as multi type on fatigue behavior of friction stir spot welded joints is investigated. The joints that are considered with five different styles for friction stir spot welded joints: one-row four joints parallel to loading direction, two-row four-joint specimen, one-row four joints perpendicular to the loading axis, three-row as diamond shape with four joints in each edge and five friction stir spot welded specimen in three rows that middle row consist three joints. The correlation between micro hardness, cyclic material constants and mechanical strength of different zones around the friction stir spot welds are assumed to be proportional to base material hardness. A non-linear finite element analysis was carried out for simulating tensile shear multi friction stir spot welded joints with ANSYS software by considering gap effects. Using the local stress and strain calculated with finite element analysis, fatigue lives of specimens were predicted with Morrow, modified Morrow and Smith–Watson–Topper (SWT) damage equations. Experimental fatigue tests of welded specimens have been carried out using constant amplitude load control servo-hydraulic fatigue testing machine. The results reveal that there is relatively good agreement between fatigue life predictions and experimental data in reasonable fatigue life regime.  相似文献   

6.
The present paper is concerned with the use of the Modified Wöhler Curve Method to estimate fatigue lifetime of thin welded joints of both steel and aluminium subjected to in-phase and out-of-phase multiaxial fatigue loading. The Modified Wöhler Curve Method postulates that, in welded connections subjected to in-service complex time-variable loading, fatigue damage reaches its maximum value on that material plane experiencing the maximum range of the shear stress amplitude, such a stress quantity being calculated according to the Maximum Variance concept. The most important peculiarity of the above multiaxial fatigue criterion is that it can be applied by performing the stress analysis in terms of both nominal and local quantities, where in the latter case the relevant stress state at the assumed critical locations can be estimated according to either the reference radius concept or the Theory of Critical Distances. The accuracy and reliability of our multiaxial fatigue criterion was systematically checked through several experimental results taken from the literature and generated by testing, under in-phase and out-of-phase biaxial loading, welded joints of both steel and aluminium having thickness of the main tube lower than 5 mm. Such a systematic validation exercise allowed us to prove that the Modified Wöhler Curve Method is a powerful tool suitable for performing the fatigue assessment of thin welded joints, this holding true independently of the strategy adopted to perform the stress analysis. Finally, a microstructural motivation of the length scales included in the Theory of Critical Distances can be established by linking this technique to gradient mechanics, as we will argue.  相似文献   

7.
Abstract— The use of the hot spot stress approach to the fatigue analysis of welded components is briefly described. Results are presented of fatigue tests on arc welded steel joints (C-Mn and stainless), carried out at Lappeenranta University of Technology between 1980 and 1993, based on the hot spot approach. Based on experimentally-measured hot spot strains, the fatigue capacities of around 100 specimens of C-Mn steel joints, and 80 stainless steel joints, were found to be consistent. The fatigue class FAT 100, or in many cases FAT 112 or higher, can be used as the design hot spot fatigue strength for toe failure of welded joints of moderate thickness, i.e. up to 10 mm. A sharp transition at the fusion zone from the base metal to the weld was clearly shown to be detrimental, leading to a fatigue capacity below average. The log, value of the standard deviation of fatigue life, or the fatigue capacity (Δσ3 N ), was typically 0.13 within a series of C-Mn joints. Statistical analysis of all test data concerning weld toe failure gave a standard deviation of 0.24. By considering all the specimens in one series, a mean fatigue strength of FAT 148, and a characteristic fatigue strength of FAT 107, were obtained.  相似文献   

8.
Metal fatigue in welded joints in offshore structures is considered. Due to the considerable variability of conditions, a probabilistic approach is used. Theoretical studies of various aspects of the fatigue reliability problem in welded joints are presented. These include a study of the Palmgren-Miner rule, a modified linear model on S/N data, the use of the rainflow method of counting, and a closed form expression for the probability of fatigue failure. A probability model is derived as a suggested basis for an approach to fatigue design.  相似文献   

9.
Fatigue damage of butt‐welded joints is investigated by a damage mechanics method. First, the weld‐induced residual stresses are determined by using a sequentially coupled thermo‐mechanical finite element analysis. The plastic damage of material is then calculated with the use of Lemaitre's plastic damage model. Second, during the subsequent fatigue damage analysis, the residual stresses are superimposed on the fatigue loading, and the weld‐induced plastic damage is considered as the initial damage via an elasto‐plastic fatigue damage model. Finally, the fatigue damage evolution, the relaxation of residual stress, and the fatigue lives of the joints are evaluated using a numerical implementation. The predicted results agree well with the experimental data.  相似文献   

10.
Welded assemblies are commonly used in the shipbuilding industry. Because of the combination of stress concentration and cyclic loading, welded joints could be a critical area for fatigue damage. Thus, knowing stress and strain histories at the critical points of the structure is necessary, particularly when a confined plasticity occurs, to determine the fatigue life of welded assemblies. To avoid time‐consuming nonlinear finite element analyses (FEA), simplified estimation methods of the elastic–plastic strain/stress can be used. In a previous work, an approach to estimate stress state at critical points was developed and employed in the case of double‐notched specimens. The present paper focuses on welded joints in order to validate this strategy with the aim to estimate the fatigue crack initiation life of T‐joints. To go further, a parametric approach has been adopted to take into account the local geometries of welded joints and to determine the constraint operator without any FEA. The results predicted by this approach are compared with experimental fatigue results.  相似文献   

11.
Corrosion and corrosion fatigue of welded magnesium alloys In addition to the prevalent use of magnesium cast alloys a high potential for lightweight constructions is offered by magnesium‐wrought alloys, in particular in the automobile industry. The use of rolled and/or extruded magnesium alloys (profiles and sheet metals) requires suitable and economic join technologies like different welding procedures in order to join semi finished parts. Thus, the realization of lightweight constructions asks for high standards of materials‐ and joining‐technologies. In this context, the mechanical properties as well as the corrosion behaviour of the joints are of large interest. During welding of magnesium alloys, influences concerning the surface, the internal stresses and the microstructure occur. These influences particularly depend on the energy input and thus, on the welding procedure as well as the processing parameters, which all affect the corrosion behaviour of the joints. Sheets of magnesium alloys (AZ31, AZ61, AZ91) were joined with different welding procedures (plasma‐, laser beam‐ and electron‐beam welding in the vacuum and at atmosphere). The corrosion behaviour (with and without cyclic mechanical loading) of the welded joints was investigated by different methods such as corrosion tests, polarisation curves, scanning electron microscopy and metallography. Furthermore, substantial influencing variables on the corrosion behaviour of welded joints of magnesium alloys are pointed out and measures are presented, which contribute to the improvement of the corrosion behaviour.  相似文献   

12.
The paper presents a spectral fatigue damage analysis of a double hull tanker structural detail accounting for corrosion wastage over time. The cyclic load of the wave-induced vertical bending moment, analysis using a strip theory on the frequency domain, is considered for two loading conditions. The influence of sea environment parameters and operational profiles including the use of different scatter diagrams, and wave variance spectra have been analyzed. The effect on the time-dependent cumulative fatigue damage as a function of corrosion deterioration is calculated.  相似文献   

13.
Many engineering structures experience multiaxial fatigue states of stress–strain in the vicinity of welded joints. Fatigue assessment of welded joints under proportional (in-phase) cyclic loading can be performed by using conventional hypotheses (e.g., see the von Mises criterion or the Tresca criterion) on the basis of local approaches. On the contrary, the fatigue life predictions of welded joints under non-proportional (out-of-phase) cyclic loading are generally poor if these conventional hypotheses are used. In the present paper, the critical plane-based multiaxial fatigue criterion proposed by Carpinteri and Spagnoli for smooth and notched structural components is extended to the fatigue assessment of welded joints under in- and out-of-phase loadings. The applicability of this criterion, expressed in terms of nominal stresses, to the fatigue life prediction of welded specimens is investigated by using experimental data available in the literature.  相似文献   

14.
Laser welding is increasingly used for the fabrication of lightweight and cost-effective integral stiffened panels in modern civil aircraft. As these structures age in service, the issue of the effect of corrosion on their damage tolerance requires attention. In this work, laboratory data on the influence of salt fog corrosion on the fatigue behavior of cladded 6156 T4 aluminum alloy laser welded specimens are presented. The experimental investigation was performed on 6156 T4 laser butt welded sheets. Prior to fatigue testing the welded joints were exposed to laboratory salt fog corrosion exposure for 720 h. The results showed that the clad layer offers sufficient corrosion protection both on base metal and the weld. Fatigue testing was followed by standard metallographic analysis in order to identify fatigue crack initiation sites. Crack initiation is located in all welded samples near the weld reinforcement which induces a significant stress concentration. Localized corrosion attack of the clad layer, in the form of pitting corrosion, creates an additional stress concentration which accelerates crack initiation leading to shorter fatigue life relative to the uncorroded samples. The potency of small corrosion pits to act as stress concentration sites has been assessed analytically. The above results indicate that despite the general corrosion protection offered by the clad layer, the localized attack described above leads to inferior fatigue performance, a fact that should be taken under consideration in the design and maintenance of these structures.  相似文献   

15.
Substantial laboratory and field experience has indicated that, owing to the large number of wave stress cyles experienced by offshore steel structures, fatigue cracking should be the main consideration of structural reliability assessment. This paper presents the latest implementation of probabilistic fracture mechanics modelling for fatigue reliability analysis of the most common offshore structural component, the welded tubular joints. Coupled with the recent findings in inspection reliability, effective maintenance and integrity monitoring policies can be formulated. Examples of many practical situations have been analysed to illustrate the applications of the methodology.  相似文献   

16.
Applications of short fiber reinforced polymer composites (SFRPCs) have been rapidly increasing and most of the components made of these materials are subjected to cyclic loading. Therefore, their fatigue behavior and modeling have been of much interest in recent years. This literature review presents a broad review of the many factors influencing cyclic deformation, fatigue behavior, and damage development in SFRPCs. These include microstructural related effects as well as effects related to loading condition and their service environment. Microstructural related effects include those related to fiber length, content and orientation, surface treatment, and failure mechanisms. Cyclic deformation and softening, viscous characteristics, and dissipative response used to characterize and model their fatigue damage behavior and accumulation are discussed. The effects of stress concentrations and their gradient on fatigue behavior are also discussed, due to their significant influence. The effects related to the loading condition include mean stress effects which may be accompanied by cyclic creep, variable amplitude loading, and multiaxial stress effects. Since fatigue behavior is substantially influenced by the testing frequency with self-heating as the primary consequence of increased frequency, this effect is also investigated. Environmental effects considered include the effects of moisture content and temperature, as well as thermo-mechanical fatigue behavior. The effect of welded joints in manufactured components made of SFRPCs and fatigue analysis and life estimation techniques used for such components are also included.  相似文献   

17.
The tubular joints, frequently employed in the offshore industry, are submitted to stresses resulting from elementary loadings: tension/compression, in-plane bending and out-of-plane bending. This work concerns the analysis of the recommendations commonly used for the fatigue design of welded joints submitted to combined loadings. Particularly, it deals with the fatigue behaviour of T-joints submitted to deviated-bending: first, a finite element analysis was developed and a post-processing based on the structural stress approach, as proposed by the International Institute of Welding (IIW). Then, fatigue tests were conducted on T-joints submitted to deviated-bending. Comparisons between experimental and numerical results showed that this kind of recommendations is not systematically conservative. Thus, an alternative approach based on structural stresses and taking into account the multi-axial stress state in the weld toe was developed in order to complete the recommendations for the fatigue design of tubular welded joints.  相似文献   

18.
Ships and offshore structures may be operated in areas with seasonal freezing temperatures and extreme environmental conditions. While current standards state that attention should be given to the validity of fatigue design curves at subzero temperatures, studies on fatigue strength of structural steel at subzero temperatures are scarce. This study addresses the issue by analysing the fatigue strength of welded steel joints under subzero temperatures. Although critical weld details in large welded structures are mostly fillet‐welded joints, most published data are based on fatigue crack growth rate specimens cut out of butt‐welded joints. This study analyses fillet‐welded specimens at ?20°C and ?50°C against controls at room temperature. Significantly higher fatigue strength was measured in comparison to estimates based on international standards and data from design codes even at temperatures far below the allowed service temperature based on fracture toughness results.  相似文献   

19.
This study considers the effect of bending loading and the symmetry of joints on the fatigue strength of transverse non‐load carrying attachments. Conventionally, the fatigue strength of a welded joint has been determined without taking these factors into account. Experimental and finite element analyses were carried out and both methods showed that both loading type and symmetry have an influence on the fatigue resistance of a welded joint. Under tensile loading, the fatigue strength of asymmetric T‐joints was higher than that of symmetric X‐joints. Respectively, the fatigue resistance of tested joints improved explicitly when the external loading was bending. The finite element analysis was in good agreement with the test results in the joints subjected to tension but gave very conservative results in the joints subjected to bending.  相似文献   

20.
The paper studies the effects of artificial corrosion pits and complex stress fields on the fatigue crack growth of full penetration load‐carrying fillet cruciform welded joints with 45° inclined angle. Parameters of fatigue crack growth rate of welded joints are obtained from SN curves under different levels of corrosion. A numerical method is used to simulate fatigue crack growth using different mixed mode fatigue crack growth criteria. Using polynomial regression, the crack shape correction factor of welded joints is fitted as a function of crack depth ratios. Because the maximum circumferential stress criterion is simple and easy to use in practice, fatigue crack growth rate is modified using this criterion. The relationship of effective stress intensity factor, crack growth angle and crack depth is studied under different corrosion levels. The simulated crack growth path obtained from the numerical method is compared with the actual crack growth path observed by fatigue tests. The results show that fatigue cracks do not initiate at the edge or bottom of pits but at the weld toes where the maximum stress occurs. The artificial corrosion pits have little effect on the effective stress intensity factor ranges and crack growth angle. The fatigue crack growth rates of welded joints with pits 1 and 2 are 1.15 times and 1.40 times larger than that of the welded joint with no pit, respectively. The simulated crack growth path agrees well with the actual one. The fatigue life prediction accuracy using the modified formulation is improved by about 18%. The crack shape correction factor obtained using the maximum circumferential stress criterion is recommended being used to calculate fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号