首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The cost of embedding intelligence into sensors and actuators directly has dramatically reduced over the past 10 years. This has led to the recent explosion of smart sensors and actuators available from manufacturers. Initially, these have been developed for the process control industries but increasingly applications in aerospace are being found. Integration of intelligent components is being carried out in an ad hoc manner by incorporating smart elements in inherently centralised architectures. This paper discusses the application of a multidisciplinary, multiobjective optimisation approach to a military gas turbine engine control system architecture design, where implementation benefits and penalties must be systematically evaluated.  相似文献   

2.
This paper presents the design of a vibration control mechanism for a beam with bonded piezoelectric sensors and actuators and an application of the arising smart structure for vibrations suppression. The mechanical modeling of the structure and the subsequent finite element approximation are based on Hamilton's principle and classical engineering theory for bending of beams in connection with simplified modeling of piezoelectric sensors and actuators. Two control schemes LQR and H2 are considered. The latter robust controller takes into account uncertainties of the dynamical system and moreover incompleteness of the measured information, it therefore leads to applicable design of smart structures. The numerical simulation shows that sufficient vibration suppression can be achieved by means of the proposed general methods.  相似文献   

3.
IEEE 1588精密时钟同步协议2.0版本浅析   总被引:3,自引:0,他引:3  
在分布式测控系统中,各分布式设备、独立的智能传感器、作动器与系统之间的时钟同步是系统测控数据有效性的关键。IEEE 1588精密时钟同步协议有效地解决了分布式测控系统时间同步问题,也是新测试系统总线标准LXI的核心技术之一。首先介绍了IEEE 1588时钟同步的基本原理,之后主要针对最新发布的IEEE 1588 2.0版本所采用的新技术、新方法进行了分析,为进一步研究打下基础。  相似文献   

4.
In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.  相似文献   

5.
In view of the frequent ventilation network changes during production in underground mining, decreasing sensors and actuators without altering production control and safety is one of the chief engineering challenges. This work is focused on modeling identification and control strategies for underground ventilation networks in small‐scale mines using an experimental benchmark. Guidelines to obtain a discrete state space model are provided, considering the conservation laws in the network to define the structure of the linear model. The main purpose of the paper is to analyze the use of classic controllers in the mine ventilation system when there are limitations on the number of sensors and actuators available to design a feedback control system. A comparison of three classic control strategies is presented considering the a constraint on the available number of sensors. Experimental and simulation results are presented.  相似文献   

6.
This paper presents the modeling, design and simulation of a Robust Decentralized Fast Output Sampling (RDFOS) feedback controller for the vibration control of a smart structure (flexible cantilever beam) when there is actuator failure. The beam is divided into 8 finite elements and the sensors / actuators are placed at finite element positions 2, 4, 6, and 8 as collocated pairs. The smart structure is modeled using the concepts of piezoelectric theory, Euler‐Bernoulli beam theory, Finite Element Method (FEM) techniques and the state space techniques. Four multi‐variable state‐space models of the smart structure plant are obtained when there is a failure of one of the four actuators to function. The effect of failure of one of the piezo actuators to function during the vibration of the beam is observed. The tip displacements, open and closed loop responses with and without the controller are observed. For all of these models, a common stabilizing state feedback gain F is obtained. A robust decentralized fast output sampling feedback gain L which realizes this state feedback gain is obtained using the LMI approach. In this designed control law, the control inputs to each actuator of the multi‐model representation of the smart structure is a function of the output of that corresponding sensor only and the gain matrix has got all off‐diagonal terms zero and this makes the control design a robust decentralized one. Then, the performance of the designed smart system is evaluated for Active Vibration Control (AVC). The robust decentralized FOS controller obtained by the designed method requires only constant gains and hence may be easier to implement in real time.  相似文献   

7.
Increasingly, there is a move towards in-built intelligence for sensors and actuators in order to integrate these “smart” peripheral elements as part of a distributed control system. The utilisation of local intelligence to provide local fault detection and fault tolerance allows the incorporation of new variables into the structure of the system. The proposed approach is to integrate this information into the structure of the control law. Thus, the main goal is to integrate a decision-making procedure between peripheral elements and different control strategies. The reconfiguration of the control law, based upon local health measures, is decided by this procedure.  相似文献   

8.
损伤自诊断自适应智能结构系统开发研究   总被引:1,自引:0,他引:1  
智能结构是在结构中集成了传感元件、动作元件及控制系统,使材料结构具有自诊断、自适应和自修复功能的新型结构。本文研究损伤自诊断自适应智能结构的系统实现方案。将压电陶瓷和形状记忆合金埋入玻璃纤维-环氧树脂复合材料中,构成智能结构材料,开发了以计算机为核心的数据采集、处理及控制系统。该系统通过结构中的压电传感器阵列监测结构的完好状况,借助计算机中的分析、识别系统,可对损伤的形成、位置和类型进行判断,并在此基础上驱动结构中相应位置的形状记忆合金和压电驱动元件,对损伤的产生和扩展予以主动抑制  相似文献   

9.
In this paper, an optimized fuzzy controller is presented for the control of the environmental parameters at the building zone level. The occupants’ preferences are monitored via a smart card unit. Genetic algorithm optimization techniques are applied to shift properly the membership functions of the fuzzy controller in order to satisfy the occupants’ preferences while minimizing energy consumption. The implementation of the system integrates a smart card unit, sensors, actuators, interfaces, a programmable logic controller (PLC), local operating network (LON) modules and devices, and a central PC which monitors the performance of the system. The communication of the PLC with the smart card unit is performed using an RS 485 port, while the PLC-PC communication is performed via the LON network. The integrated system is installed and tested in the building of the Laboratory of Electronics of the Technical University of Crete.  相似文献   

10.
The wireless sensor/actuator networks (WSANs) can be used for spatially distributed control systems. With smart sensors and actuators, the WSANs are able to not only sense the control system states and report measurements, but also perform control and actuation. This paper investigates WSANs on their ability of control. A centralized controller is introduced into WSANs to make up closed-loop control systems, in which control decisions are made based on global network-wide information. A model of the control and communication over WSANs is made theoretically, based on which we achieved an optimal control method. It is demonstrated by simulations that the control method proposed could stabilize the control system quickly.  相似文献   

11.
Adaptive identification and control of hysteresis in smart materials   总被引:3,自引:0,他引:3  
Hysteresis hinders the effective use of smart materials in sensors and actuators. This paper addresses recursive identification and adaptive inverse control of hysteresis in smart material actuators, where hysteresis is modeled by a Preisach operator with a piecewise uniform density function. Two classes of identification schemes are proposed and compared, one based on the hysteresis output, the other based on the time-difference of the output. Conditions for parameter convergence are presented in terms of the input to the Preisach operator. An adaptive inverse control scheme is developed by updating the Preisach operator (and thus its inverse) with the output-based identification method. The asymptotic tracking property of this scheme is established, and for periodic reference trajectories, the parameter convergence behavior is characterized. Practical issues in the implementation of the adaptive identification and inverse control methods are also investigated. Simulation and experimental results based on a magnetostrictive actuator are provided to illustrate the proposed approach.  相似文献   

12.
A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account bounded disturbances, a robust distributed controller was constructed based on the system model, which was described by a set of partial differential equations (PDEs) and boundary conditions (BCs) . Subsequently, a finite dimensional controller was further developed, and it was proven that this controller can stabilize the finite dimensional model with arbitrary number of flexible modes.  相似文献   

13.
Adaptive Control for the Systems Preceded by Hysteresis   总被引:2,自引:0,他引:2  
Hysteresis hinders the effectiveness of smart materials in sensors and actuators. It is a challenging task to control the systems with hysteresis. This note discusses the adaptive control for discrete time linear dynamical systems preceded with hysteresis described by the Prandtl-Ishlinskii model. The time delay and the order of the linear dynamical system are assumed to be known. The contribution of the note is the fusion of the hysteresis model with adaptive control techniques without constructing the inverse hysteresis nonlinearity. Only the parameters (which are generated from the parameters of the linear system and the density function of the hysteresis) directly needed in the formulation of the controller are adaptively estimated online. The proposed control law ensures the global stability of the closed-loop system, and the output tracking error can be controlled to be as small as required by choosing the design parameters. Simulation results show the effectiveness of the proposed algorithm.  相似文献   

14.
This paper proposes a fractional-order integral controller, FI, which is a simple, robust and well-performing technique for vibration control in smart structures with collocated sensors and actuators. This new methodology is compared with the most relevant controllers for smart structures. It is demonstrated that the proposed controller improves the robustness of the closed-loop system to changes in the mass of the payload at the tip. The previous controllers are robust in the sense of being insensitive to spillover and maintaining the closed-loop stability when changes occur in the plant parameters. However, the phase margin of such closed-loop systems (and, therefore, their damping) may change significantly as a result of these parameter variations. In this paper the possibility of increasing the phase margin robustness by using a fractional-order controller with a very simple structure is explored. This controller has been applied to an experimental smart structure, and simulations and experiments have shown the improvement attained with this new technique in the removal of the vibration in the structure when the mass of the payload at the tip changes.  相似文献   

15.
Simultaneously optimizing the thickness of the base structure and the location of piezoelectric sensors/actuators as well as control gains is investigated for minimizing the sound radiation from the vibrating curved shell integrated with sensors/actuators under harmonic excitation. The finite element formulation of the piezoelectric curved shell structure is described. The piezoelectric element is coupled into the base shell element using nodal displacement constraint equations. The active control of structural vibration-acoustic radiation is formulated using the velocity feedback algorithm. Based on both passive and active control measures, an integrated optimization model of the vibro-acoustic problem is proposed, in which the sound power is taken as the objective function. The thickness of the base shell elements and the parameters of control system, including the location of sensors/actuators and control gains, are chosen as the design variables. In order to restrict the complexity of the control system, the number of sensors/actuators is considered as a constraint. A simulated annealing algorithm is extended to handle the vibro-acoustic optimization problem with the continuous and discrete variables co-existing. Numerical examples demonstrate the effectiveness of the optimization scheme and the correctness of the computation program.  相似文献   

16.
系统提出了智能家居控制系统的解决方案,详细的论述了系统的组成及实现原理.以ATmega128作为主控微处理器,使用GSM模块TC351传输信息,实现了手机终端与智能家居控制系统远距离双工通信的平台.以温湿传感、人体红外感应传感器、MQ2煤气传感器采集居家环境信息,可以利用手机短信、飞信远程控制空调和门锁的开关,监控家里...  相似文献   

17.
针对三层弯曲型导电聚合物驱动器,研究了一种无需外部传感反馈装置的逆模型控制方法。通过实验辨识获得驱动器系统传递函数准确,以驱动器系统的4阶传递函数建立的逆模型控制系统结构简单、易于实现。通过补偿驱动器位移漂移特性提高位移控制精度。实验结果表明:其所提出的具有位移漂移补偿的逆模型控制位移输出能够快速有效地跟踪驱动器的实际位移响应,同时精度符合控制要求。  相似文献   

18.
讨论了一类存在通信约束和时延的多输入多输出网络控制系统(NCS)的建模和控制问题.该NCS具有多个传感器和执行器,由于网络通信受限,在同一时刻只能允许部分传感器和执行器访问网络.传感器和执行器访问网络的过程可以用两个马尔可夫链来描述,并且在假设传感器—控制器时延和控制器—执行器时延均为短时延的情况下,将整个闭环NCS建模成一个具有两个模式的马尔可夫切换系统.基于LMI技术和李亚普诺夫方法,给出了闭环NCS随机稳定的充分条件,并给出了状态反馈控制器的设计方法.最后的数值算例验证了所提方法的有效性.  相似文献   

19.
This paper reports the design, fabrication and control of arrayed microelectromechanical systems (MEMS)-based actuators for distributed micromanipulation by generation and control of an air-flow force field. The authors present an original design of pneumatic microactuator, improving reliability and durability of a distributed planar micromanipulator described in the previous study. The fabrication process is based on silicon-on-insulator (SOI) wafer and HF (hydroflouric acid) vapor release, which also significantly increases the production yield of the 560 microactuator array device of 35/spl times/35 mm/sup 2/. Minimization of the electrostatic actuation pull-in voltage through suspension shaping fabrication was also studied, and successfully validated for electrical efficiency improvement. A distributed control method to achieve good conveyance performance and reduce motion control instability was investigated. An emulation approach was chosen to validate a decentralized control strategy on the distributed active surface in order to conduct a proof-of-concept of a future smart structure, integrating sensors, intelligence, and microactuators. Thus, a centralized/decentralized control flow, inspired by autonomous mobile robot principles, was applied. It was modeled and implemented using C-programming language. Experimental and characterization results validate the control method for feedback micromanipulation with good velocity and load capacity performance.  相似文献   

20.
In this paper, a review of recent journal articles on passive, active, semi-active, and hybrid vibration control of structures subjected to dynamic loading is presented. Passive systems reviewed include tuned mass damper (TMD), tuned liquid column damper (TLCD), tuned liquid column ball damper (TLCBD), circular TLCD (CTLCD), and pendulum TLCD (PTLCD). Active control systems include active tuned mass dampers (ATMD) and piezoelectric actuators. Semi-active systems include magnetorheological (MR) damper, negative stiffness devices (NSD), magneto-rheological damper TMD (MR-TMD), variable stiffness semi-active TMD (VS-STMD), variable damper STMD (VD-STMD), and recentering variable friction device (RVFD). Hybrid systems include active base isolation system and semi-active MR dampers with nonlinear base isolators. The current frontier of research is semi-active control of structures as well hybridization of various control systems. The problem is complex requiring integration of several different hardware and software technologies with structural design such as smart materials, adaptive dampers, actuators, sensors, and control and signal processing algorithms. This complexity also makes it an exciting area of research and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号