首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomistic simulations were carried out to characterize the coordination environments of U incorporated in three Fe-(hydr)oxide minerals: goethite, magnetite, and hematite. The simulations provided information on U-O and U-Fe distances, coordination numbers, and lattice distortion for U incorporated in different sites (e.g., unoccupied versus occupied sites, octahedral versus tetrahedral) as a function of the oxidation state of U and charge compensation mechanisms (i.e., deprotonation, vacancy formation, or reduction of Fe(III) to Fe(II)). For goethite, deprotonation of first shell hydroxyls enables substitution of U for Fe(III) with a minimal amount of lattice distortion, whereas substitution in unoccupied octahedral sites induced appreciable distortion to 7-fold coordination regardless of U oxidation states and charge compensation mechanisms. Importantly, U-Fe distances of ~3.6 ? were associated with structural incorporation of U and cannot be considered diagnostic of simple adsorption to goethite surfaces. For magnetite, the octahedral site accommodates U(V) or U(VI) with little lattice distortion. U substituted for Fe(III) in hematite maintained octahedral coordination in most cases. In general, comparison of the simulations with available experimental data provides further evidence for the structural incorporation of U in iron (hydr)oxide minerals.  相似文献   

2.
In cultures of Desulfovibrio desulfuricans 620 the effects of iron(III) (hydr)oxides (hematite, goethite, and ferrihydrite) on microbial reduction and reoxidation of uranium (U) were evaluated under lactate-limited sulfate-reducing conditions. With lactate present, G20 reduced U(VI) in both 1,4-piperazinediethanesulfonate (PIPES) and bicarbonate buffer. Once lactate was depleted, however, microbially reduced U served as an electron donor to reduce Fe(III) present in iron(III) (hydr)oxides. With the same initial amount of Fe(III) (10 mmol/L) for each iron(III) (hydr)oxide, reoxidation of U(IV) was greater with hematite than with goethite orferrihydrite. As the initial mass loading of hematite increased from 0 to 20 mmol of Fe(III)/L, the rate and extent of U(IV) reoxidation increased. Subsequent addition of hematite [15 mmol of Fe(III)/L] to stationary-phase cultures containing microbially reduced U(IV) also resulted in rapid reoxidation to U(VI). Analysis by U L3-edge X-ray absorption near-edge spectroscopy (XANES) of microbially reduced U particles yielded spectra similar to that of natural uraninite. Observations by high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray spectroscopic analysis confirmed that precipitated U associated with cells was uraninite with particle diameters of 3-5 nm. By the same techniques, iron sulfide precipitates were found to have a variable Fe and S stoichiometry and were not associated with cells.  相似文献   

3.
Uptake of Fe(II) onto hematite (alpha-Fe2O3), corundum (alpha-Al2O3), amorphous ferric oxide (AFO), and a mixture of hematite and AFO was measured. Uptake was operationally divided into adsorption (extractable by 0.5 N HCl within 20 h) and fixation (extractable by 3.0 N HCl within 7 d). For 0.25 mM Fe(II) onto 25 mM iron(III) hematite at pH 6.8: (i) 10% of Fe(II) was adsorbed within 1 min; (ii) 20% of Fe(II) was adsorbed within 1 d; (iii) uptake slowly increased to 24% of Fe(II) during the next 24 d, almost all adsorbed; (iv) at 30 d, the uptake increased to 28% of Fe(II) with 6% of total Fe(II) fixed; and (v) uptake slowly increased to 30% of Fe(II) by 45 d with 10% of total Fe(II) fixed. Similar results were observed for 0.125 mM Fe(II) onto 25 mM iron(III) hematite, except that percent of adsorption and fixation were increased. There was adsorption but no fixation for 0.25 mM Fe(II) onto corundum [196.2 mM Al(III)] at pH 6.8, for 0.125 mM Fe(II) onto 25 mM iron(III) hematite at pH 4.5, and for 0.25 mM Zn(II) onto 25 mM iron(III) hematite at pH 6.8. A small addition of AFO to the hematite suspension increased Fe(II) fixation when 0.25 mM Fe(II) was reacted with 25 mM iron(III) hematite and 0.025 mM Fe(III) AFO at pH 6.8. Reaction of 0.125 mM Fe(II) with 2.5 mM Fe(III) AFO resulted in rapid adsorption of 30% of added Fe(II), followed by conversion of AFO to goethite and a decrease in adsorption without Fe(II) fixation. The fixation of Fe(II) by hematite at pH 6.8 is consistent with interfacial electron transfer and the formation of new mineral phases. We propose that electron transfer from adsorbed Fe(II) to structural Fe(III) in hematite results in oxidation of Fe(II) to AFO on the surface of hematite and that solid-phase contact among hematite, AFO, and structural Fe(II) produces magnetite (Fe3O4). The unique interactions of Fe(II) with iron(III) oxides would be environmentally important to understand the fate of redox-sensitive chemicals.  相似文献   

4.
Phenazines are small redox-active molecules produced by a variety of bacteria. Beyond merely serving as antibiotics, recent studies suggest that phenazines play important physiological roles, including one in iron acquisition. Here we characterize the ability of four electrochemically reduced natural phenazines--pyocyanin (PYO), phenazine-1-carboxylate (PCA), phenazine-1-carboxamide, and 1-hydroxyphenazine (1-OHPHZ)--to reductively dissolve ferrihydrite and hematite in the pH range 5-8. Generally, the reaction rate is higher for a phenazine with a lower reduction potential, with the reaction between PYO and ferrihydrite at pH 5 being an exception; the rate decreases as the pH increases; the rate is higher for poorly crystalline ferrihydrite than for highly crystalline hematite. Ferric (hydr)oxide reduction by reduced phenazines can potentially be inhibited by oxygen, where O2 competes with Fe(III) as the final oxidant The reactivity of reduced phenazines with 02 decreases in the order: PYO > 1-OHPHZ > PCA. Strikingly, reduced PYO,which isthe least reactive phenazine with ferrihydrite and hematite at pH 7, is the most reactive phenazine with O2. These results imply that different phenazines may perform different functions in environments with gradients of iron and O2.  相似文献   

5.
The reductive dissolution of poorly crystalline ferric oxides in the presence of cysteine was investigated to evaluate the potential of cysteine as a possible electron carrier to stimulate the reduction of iron(III) oxides by Geobacter sulfurreducens. The extent and rate of biotic and abiotic reduction of iron(III) oxides in the presence of cysteine at various concentrations were compared. Iron(III) oxides were reduced abiotically by cysteine. The initial rate and extent of iron(III) oxide reduction were correlated linearly with the cysteine concentration ranging from 0 to 6 mM. Also, addition of 0.5-2 mM cysteine significantly stimulated the rate and the extent of iron(III) oxide reduction in cultures of G. sulfurreducens. The cysteine concentration decreased in accordance with the increase of Fe(II) concentration and reached a nearly constant residual concentration. Cysteine depletion followed first-order kinetics and increased linearly with the cysteine concentration. An 8- to 11-fold increase in the extent of iron(III) oxide reduction relative to the abiotic system was observed. Comparison of sorbed and dissolved Fe(II) concentrations between cultures amended with cysteine and with other organic chelators showed that solubilization is not the main factor in cysteine-stimulated Fe(III) reduction. Addition of cystine could enhanced the extent of iron(III) oxide reduction, concomitant with the increase of the regenerated cysteine concentration and support the hypothesis that cysteine could serve as an electron carrier to transfer electrons from G. sulfurreducens to poorly crystalline iron(III) oxides.  相似文献   

6.
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.  相似文献   

7.
In batch culture experiments we examined oxidation of As(III) and adsorption of As(III/V) by biogenic manganese oxide formed by a manganese oxide-depositing fungus, strain KR21-2. We expected to gain insight into the applicability of Mn-depositing microorganisms for biological treatment of As-contaminated waters. In cultures containing Mn2+ and As(V), the solid Mn phase was rich in bound Mn2+ (molar ratio, approximately 30%) and showed a transiently high accumulation of As(V) during the early stage of manganese oxide formation. As manganese oxide formation progressed, a large proportion of adsorbed As(V) was subsequently released. The high proportion of bound Mn2+ may suppress a charge repulsion between As(V) and the manganese oxide surface, which has structural negative charges, promoting complex formation. In cultures containing Mn2+ and As(III), As(III) started to be oxidized to As(V) after manganese oxide formation was mostly completed. In suspensions of the biogenic manganese oxides with dissolved Mn2+, As(III) oxidation rates decreased with increasing dissolved Mn2+. These results indicate that biogenic manganese oxide with a high proportion of bound Mn2+ oxidizes As(III) less effectively than with a low proportion of bound Mn2+. Coexisting Zn2+, Ni2+, and Co2+ also showed similar effects to different extents. The present study demonstrates characteristic features of oxidation and adsorption of As by biogenic manganese oxides and suggests possibilities of developing a microbial treatment system for water contaminated with As that is suited to the actual situation of contamination.  相似文献   

8.
Oxidative transformation of triclosan and chlorophene by manganese oxides   总被引:6,自引:0,他引:6  
The antibacterial agents triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) and chlorophene (4-chloro-2-(phenylmethyl)phenol) show similar susceptibility to rapid oxidation by manganese oxides (delta-MnO2 and MnOOH) yielding Mn(II) ions. Both the initial reaction rate and adsorption of triclosan to oxide surfaces increase as pH decreases. The reactions are first-order with respect to the antibacterial agent and MnO2. The apparent reaction orders to H+ were determined to be 0.46 +/- 0.03 and 0.50 +/- 0.03 for triclosan and chlorophene, respectively. Dissolved metal ions (Mn(II), Zn(II), and Ca(II)) and natural organic matter decrease the reaction rate by competitively adsorbing and reacting with MnO2. Product identification indicates that triclosan and chlorophene oxidation occurs at their phenol moieties and yields primarily coupling and p-(hydro)quinone products. A trace amount of 2,4-dichlorophenol is also produced in triclosan oxidation, suggesting bond-breaking of the ether linkage. The experimental results support the mechanism that after formation of a surface precursor complex of the antibacterial agent and the surface-bound Mn(IV), triclosan and chlorophene are oxidized to phenoxy radicals followed by radical coupling and further oxidation to form the end products. Compared to several structurally related substituted phenols (i.e., 2-methyl-4-chlorophenol, 2,4-dichlorophenol, 3-chlorophenol, and phenol), triclosan and chlorophene exhibit comparable or higher reactivities toward oxidation by manganese oxides. The higher reactivities are likely affected by factors including electronic and steric effects of substituents and compound hydrophobicity. Once released into the environment, partitioning of triclosan and chlorophene to soils and sediments is expected because of their relatively hydrophobic nature. Results of this study indicate that manganese oxides in soils will facilitate transformation of these antibacterial agents.  相似文献   

9.
At least 93% of Fe(II) remained free, as defined by ferrozine assay under anoxic conditions in the presence of humic acid (HA) and two simulated landfill leachates of different maturities. However, tangential flow ultrafiltration showed a weaker but more extensive interaction of Fe with organic carbon (OC); 90% of Fe associated with the less mature leachate. Despite the existence of this weak interaction under anoxic conditions, there was no difference in iron(III) (hydr)oxide production whether HA was added prior to or coincident with the oxidation of Fe(II) on exposure to oxic conditions. Under oxic conditions ferrozine showed that more Fe(II) bound to OC, up to 50% to HA. However, this occurs via oxidation of Fe(II) to Fe(III), which is bound and then thermally reduced. This affinity for Fe(III) and the ability to carry out thermal reduction both increase with the maturity of the OC. The rate at which ferrozine-defined free Fe(II) was lost on exposure to dissolved oxygen was also enhanced by the more mature OC, while it was slowed by acetogenic leachate. The slowing must be a consequence of the filtration-defined Fe(II)/OC interaction.  相似文献   

10.
A new methodology is presented, called differential potentiometric titration (DPT), which allows the determination of the point of zero charge (pzc) of metal (hydr)oxides using only one potentiometric curve. By performing extensive simulations of potentiometric titrations for various model (hydr)oxides, we found that an inflection point in a H+(cons,surf) versus pH potentiometric curve (H+(cons,surf): hydrogen ions consumed on the surface of the (hydr)oxide) and a peak in the corresponding differential curve, dH+(cons,surf)/dpH versus pH, appear at a pH equal to the pzc assumed for a model (hydr)oxide. This distinguishable peak appears at the same position irrespective of the surface ionization and the interfacial model adopted as well as the assumed ionic strength. It was found that the aforementioned peak also appears in the high-resolution differential potentiometric curves experimentally determined for four oxides (SiO2, TiO2, gamma-Al2O3, and MgO) that are widely used in various environmental and other technological applications. The application of DPT to the above-mentioned oxides provided practically the same pzc values as the corresponding ones achieved by using four different techniques as well as the corresponding isoelectric point (iep) values determined by microelectrophoresis. Differences between the pzc and iep values determined using various techniques in the case of MgO were attributed to the increasing dissolution of this oxide as pH decreases and the adsorption of cations (Mg2+, Na+) on the MgO/electrolytic solution interface.  相似文献   

11.
Two dominant variables that control the adsorption of toxic trace metals to suspended particulate materials and aquatic surface coatings are surface composition and solution pH. A model for the pH-dependent adsorption of Pbto heterogeneous particulate surface mixtures was derived from experimental evaluation of Pb adsorption to laboratory-derived surrogates. The surrogate materials were selected to represent natural reactive surface components. Pb adsorption to both the laboratory surrogates and natural biofilms was determined in chemically defined solutions under controlled laboratory conditions. Pb adsorption was measured over a pH range of 5-8, with an initial Pb concentration in solution of 2.0 microM. The surface components considered include amorphous Fe oxide, biogenic Mn oxide produced by a Mn(II) oxidizing bacterium (Leptothrix discophora SS-1), Al oxide, the common green alga Chlorella vulgaris, and Leptothrix discophora SS-1 cells. A linearization of Pb adsorption data for each adsorbent was used to quantify the relationship between Pb adsorption and pH. The parameters for individual adsorbents were incorporated into an additive model to predict the total Pb adsorption in multiple-adsorbent natural surface coatings that were collected from Cayuga Lake, NY. Pb adsorption experiments on the natural surface coatings at variable pH were utilized to verify the additive model predictions based on the pH dependent behavior of the experimental laboratory surrogates. Observed Pb adsorption is consistent with the model predictions (within 1-24%) over the range of solution pH values considered. The experimental results indicate that the combination of Fe and biogenic Mn oxides can contribute as much as 90% of Pb adsorbed on Cayuga Lake biofilms, with the dominant adsorbent switching from Mn to Fe oxide with increasing pH.  相似文献   

12.
In this study, the reactivity of lead (Pb(II)) on naturally occurring Mn(III,IV) (oxyhydr)oxide minerals was evaluated using kinetic, thermodynamic, and spectroscopic investigations. Aqueous Pb(II) was more strongly adsorbed to birnessite (delta-MnO1.7) than to manganite (gamma-MnOOH) under all experimental conditions. The isoteric heat of Pb adsorption (delta HT) or birnessite was 94 kJ mol-1 at a surface loading of 1.1 mmol g-1, and decreased with increasing adsorption density. This indicated that adsorption was an endothermic process and that birnessite possessed heterogeneous sites of reactivity for Pb. X-ray absorption fine structure (XAFS) spectra revealed that Pb was adsorbed as inner-sphere complexes on both birnessite and manganite with no evidence to suggest oxidation as an operative sorption mechanism. Lead appeared to coordinate to vacancy sites in the birnessite layer structure with concurrent release of Mn to solution, which resulted in a greater number of second shell Mn scatterers in Pb-birnessite when compared to Pb-manganite samples. The difference in Pb coordination apparently explained the contrasting desorption behavior between the two Mn minerals. These results have significant implications for Pb partitioning in soil environments containing solid-phase Mn(III,IV) (oxyhydr)oxides.  相似文献   

13.
Distinct layers with accumulated iron and manganese oxyhydroxides are found in the recent sediments of Lake Baikal (Siberia). In the South and Central Basins, these concretions accumulate close to the sediment-water interface. In northern Lake Baikal and the area of Academician Ridge, however, massive Fe/Mn crusts are formed within several thousand years at redox fronts 10 to 15 cm below the sediment surface. In some places, precipitated iron and manganese oxyhydroxides are spatially separated. The patterns are a result of secondary iron and manganese oxide precipitation. This natural long-term experiment allows the analysis of competitive adsorption and coprecipitation of trace elements with iron and manganese oxides in sediments. Background concentrations in the sediment of oxoanions (P, As, Sb, Mo); of trace metals (Cr, V, Cu, Zn, Cd, Pb); and of Mg, Ca, Sr, La, Ce, Pr, Nd, and Sm were analyzed by inductively coupled plasma mass spectrometry. Despite the differences in catchment geology of the many tributaries, they are remarkably uniform in sediment cores from different basins of Lake Baikal. Enrichment factors of P and As within Fe crusts revealed concentrations up to 14 and 58 times higher than the background, respectively. No enrichment of P and As was found in the Mn layers. By contrast, Mo accumulated exclusively in the Mn layer with up to 35-fold enrichment. Sb was only slightly enriched in both the Fe and the Mn layers. Among the trace metals studied, only Cd was found at elevated concentrations with a preference for the Mn layer. Ca and Sr were correlated with both Fe and Mn accumulations. The study quantifies the well-known specific adsorption and coprecipitation of P and As at authigenic iron oxides and of Mo on manganese oxides. In addition, the enrichment of Cd at manganese oxides in contrast to the conservative behavior of Zn and Pb reveals highly selective accumulation processes.  相似文献   

14.
Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for  相似文献   

15.
Under oxic conditions, Tc exists as the soluble, weakly sorbing pertechnetate [TcO4-] anion. The reduced form of technetium, Tc(IV), is stable in anoxic environments and is sparingly soluble as TcO2 x nH2O(s). Here we investigate the heterogeneous reduction of Tc(VII) by Fe(II) adsorbed on Al (hydr)oxides [diaspore (alpha-AlOOH) and corundum (alpha-Al2O3)]. Experiments were performed to study the kinetics of Tc(VII) reduction, examine changes in Fe surface speciation during Tc(VII) reduction (M?ssbauer spectroscopy), and identify the nature of Tc(IV)-containing reaction products (X-ray absorption spectroscopy). We found that Tc(VII) was completely reduced by adsorbed Fe(II) within 11 (diaspore suspension) and 4 days (corundum suspension). M?ssbauer measurements revealed thatthe Fe(II) signal became less intense with Tc(VII) reduction and was accompanied by an increase in the intensity of the Fe(III) doublet and magnetically ordered Fe(III) sextet signals. Tc-EXAFS spectroscopy revealed that the final heterogeneous redox product on corundum was similar to Tc(IV) oxyhydroxide, TcO2 x nH2O.  相似文献   

16.
Zerovalent iron (Fe0) has tremendous potential as a remediation material for removal of arsenic from groundwater and drinking water. This study investigates the speciation of arsenate (As(V)) and arsenite (As(III)) after reaction with two Fe0 materials, their iron oxide corrosion products, and several model iron oxides. A variety of analytical techniques were used to study the reaction products including HPLC-hydride generation atomic absorption spectrometry, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray analysis, and X-ray absorption spectroscopy. The products of corrosion of Fe0 include lepidocrocite (gamma-FeOOH), magnetite (Fe3O4), and/or maghemite (gamma-Fe2O3), all of which indicate Fe(II) oxidation as an intermediate step in the Fe0 corrosion process. The in-situ Fe0 corrosion reaction caused a high As(III) and As(V) uptake with both Fe0 materials studied. Under aerobic conditions, the Fe0 corrosion reaction did not cause As(V) reduction to As(III) but did cause As(III) oxidation to As(V). Oxidation of As(III) was also caused by maghemite and hematite minerals indicating that the formation of certain iron oxides during Fe0 corrosion favors the As(V) species. Water reduction and the release of OH- to solution on the surface of corroding Fe0 may also promote As(III) oxidation. Analysis of As(III) and As(V) adsorption complexes in the Fe0 corrosion products and synthetic iron oxides by extended X-ray absorption fine structure spectroscopy (EXAFS) gave predominant As-Fe interatomic distances of 3.30-3.36 A. This was attributed to inner-sphere, bidentate As(III) and As(V) complexes. The results of this study suggest that Fe0 can be used as a versatile and economical sorbent for in-situ treatment of groundwater containing As(III) and As(V).  相似文献   

17.
Uranium mobility in the environment is partially controlled by its oxidation state, where it exists as either U(VI) or U(IV). In aerobic environments, uranium is generally found in the hexavalent form, is quite soluble, and readily forms complexes with carbonate and calcium. Under anaerobic conditions, common metal respiring bacteria can reduce soluble U(VI) species to sparingly soluble UO2 (uraninite); stimulation of these bacteria, in fact, is being explored as an in situ uranium remediation technique. However, the stability of biologically precipitated uraninite within soils and sediments is not well characterized. Here we demonstrate that uraninite oxidation by Fe(III) (hydr)oxides is thermodynamically favorable under limited geochemical conditions. Our analysis reveals that goethite and hematite have a limited capacity to oxidize UO2(biogenic) while ferrihydrite can lead to UO2(biogenic) oxidation. The extent of UO2(biogenic) oxidation by ferrihydrite increases with increasing bicarbonate and calcium concentration, but decreases with elevated Fe(II)(aq) and U(VI)(aq) concentrations. Thus, our results demonstrate that the oxidation of UO2(biogenic) by Fe(III) (hydr)oxides may transpire under mildly reducing conditions when ferrihydrite is present.  相似文献   

18.
Uptake of ferrous iron from aqueous solution by iron oxides results in the formation of a variety of reactive surface species capable of reducing polyhalogenated methanes (PHMs). Pseudo-first-order reaction rate constants, k(obs), of PHMs increased in the order CHBrCl2 < CHBr2Cl < CHBr3 < CCl4 < CFBr3 < CBrCl3 < CBr2Cl2. The k(obs) values increased with the exposure time, teq, of Fe(II) to suspended iron oxides which was attributed to the rearrangement of initially sorbed Fe(II) species to more reactive surface species with time. At pH 7.2, the k(obs) values of PHMs also increased with the concentration of surface-bound ferrous iron, Fe(II)sorb, particularly when Fe(II)tot was increased to concentrations where surface precipitation becomes likely. At fixed total Fe(II) concentrations, k(obs) values increased exponentially with pH. The highest reactivities were associated with pH conditions where surface precipitation of Fe(II) is expected. Fe(II)sorb and pH, however, had opposite effects on the product formation of PHMs. At pH 7.2, the formation of formate from CX4 (X = CI, Br) increased with Fe(II)sorb, whereas increasing pH favored the formation of CHX3. The ratio of halogenated products and formate formed is indicative of the relative importance of initial one- or two-electron-transfer processes, respectively, and was found to depend on the type of iron oxide mineral also. Our data form a basis to assess the importance of chemical reactions in natural attenuation processes of PHMs in environmental systems under iron-reducing conditions.  相似文献   

19.
Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of synthetic Fe(III) oxides and highly Fe(II) oxide-enriched (18-35 wt % Fe) Atlantic coastal plain sediments. In contrast, long-term (20-60 d) U(VI) reduction was less than 30% in suspensions of six other natural solids with relatively low Fe(III) oxide content (1-5 wt % Fe). Fe(II) sorption site density was severalfold lower on these natural solids (0.2-1.1 Fe(II) nm(-2)) compared tothe synthetic Fe(lII) oxides (1.6-3.2 Fe(II) nm(-2)), which may explain the poor U(VI) reduction in the natural solid-containing systems. Addition of the reduced form of the electron shuttling compound anthrahydroquinone-2,6-disulfonate (AH2DS; final concentration 2.5 mM) to the natural solid suspensions enhanced the rate and extent of U(VI) reduction, suggesting that AH2DS reduced U(VI) at surface sites where reaction of U(VI) with sorbed Fe(II) was limited. This study demonstrates that abiotic, Fe(II)-driven U(VI) reduction is likely to be less efficient in natural soils and sediments than would be inferred from studies with synthetic Fe(III) oxides.  相似文献   

20.
The fate of Zn and other sorbed heavy metals during microbial reduction of iron oxides is different when comparing synthetic Fe-(hydr)oxides and natural sediments undergoing a similar degree of iron reduction. Batch experiments with the iron-reducing organism Shewanella putrefaciens were conducted to examine the effects of an aqueous complexant (nitrilotriacetic acid or NTA), two solid-phase complexants (kaolinite and montmorillonite), an electron carrier (anthraquinone disulfonic acid or AQDS), and a humic acid on the speciation of Zn during microbial reduction of synthetic goethite. Compared to systems containing only goethite and Zn, microbial Fe(III) reduction in the presence of clay resulted in up to a 50% reduction in Zn immobilization (insoluble in a 2 h 0.5 M HCl extraction) without affecting Fe(II) production. NTA (3 mM) increased Fe(II) production 2-fold and resulted in recovery of nearly 75% of Zn in the aqueous fraction. AQDS (50 microM) resulted in a 12.5% decrease in Fe(II) production and a 44% reduction in Zn immobilization. Humic acid additions resulted in up to a 25% decrease in Fe(II) production and 51% decrease in Zn immobilization. The results suggest that all the components examined here as either complexing agents or electron shuttles reduce the degree of Zn immobilization by limiting the availability of Zn for incorporation into newly formed biogenic minerals. These results have implications for the remediation of heavy metals in a variety of natural sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号