首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
单纤维界面强度光弹性实验和理论研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用光弹性实验和有限元计算两种方法对单丝拔出复合材料模型的界面剪应力进行了研究。从计算和实验两个方面证明,当在纤维自由端施加一轴向拉力后,在单丝与基体界面的埋入端附近将出现剪应力的最大值。然后,沿着单丝的埋入方向,剪应力迅速降低,在界面区的中间趋于最小值,并且基本稳定不变。由此证明,单丝增强复合材料中界面的应力传递主要集中在单丝的埋入端附近,并且在这一区域最先达到危险应力,发生界面的脱胶破坏,引起整个试件的失效。  相似文献   

2.
通常NiTi纤维圆柱体剪滞模型是通过界面传递应力,界面剪应力较大时,界面将产生脱粘.将两端有小垫片的NiTi纤维埋入基体中,构成一种新的NiTi纤维圆柱体剪滞模型,在一定的简化条件下,针对马氏体逆相变过程,对纤维轴应力、界面剪应力的分布及应力传递进行分析.分析结果表明,与通常模型比较,新模型可通过界面和小垫片传递应力,减小界面剪应力峰值,能充分发挥NiTi纤维的作动效应.此外还讨论了小垫片几何尺寸对应力分布及传递的影响.  相似文献   

3.
为研究单丝复合体系在单向加载过程中的应力传递及损伤演化规律,基于剪滞模型建立了渐进损伤过程的三维数值分析模型。单丝复合体系的渐进损伤过程曲线和临界状态下的纤维段数、应变载荷及纤维轴向应力分布均与文献试验结果非常吻合,表明本文所提出的单丝复合体系渐进损伤模型能够有效模拟单丝断裂过程中的损伤起始、损伤演化和断裂临界状态。研究了模型中组分材料的模量和强度对损伤过程的影响。结果表明:保持组分材料强度不变,增加纤维的模量能够加快损伤过程,基体模量和界面模量的增加对单丝复合体系渐进损伤过程影响不大;在组分材料模量及界面强度不变的情况下,随着纤维强度的增加,单丝复合体系渐进损伤过程的起始应变载荷和临界应变载荷均增加,临界状态下的纤维断点数减少。  相似文献   

4.
建立了考虑纤维随机分布并包含界面的复合材料微观力学数值模型,模拟玻璃纤维/环氧复合材料固化过程中的热残余应力。通过与纤维周期性分布模型的计算结果进行对比,发现纤维分布形式会对复合材料的热残余应力产生重要影响,纤维随机分布情况下的最大热残余应力明显大于纤维周期性分布的情况下。研究了含热残余应力的复合材料在横向拉伸与压缩载荷下的损伤和破坏过程,结果表明:热残余应力的存在显著影响了复合材料的损伤起始位置和扩展路径,削弱了复合材料的横向拉伸和压缩强度。在横向拉伸载荷下,考虑热残余应力后,复合材料的强度有所下降,断裂应变显著降低;在横向压缩载荷下,考虑热残余应力后,复合材料的强度略有下降,但失效应变基本保持不变。由于热残余应力的影响,复合材料的横向拉伸和压缩强度分别下降了10.5%和5.2%。   相似文献   

5.
单丝复合材料段裂试验(SFCFT)中,随着外载荷的增加,纤维出现了随机脆断的现象,并在一定的载荷下纤维的段裂数达到"饱和"状态(即纤维段裂数目不再增加),该试验常用于表征纤维与基体间界面性能。针对该试验,本文中充分考虑了组分材料的真实性能(即基体材料的弹塑性性能),利用弹塑性剪滞理论进行纤维与基体间的应力传递分析,初步获得较真实的纤维轴向应力及界面剪应力分布形式;在此基础上,考虑纤维强度分布的非均匀性,利用蒙特卡罗(Monte Carlo)方法对试验中纤维的随机段裂过程进行了模拟预报,获得载荷与纤维的段裂数的关系。模拟预报与试验结果比较吻合,表明该应力分析及模拟方法的有效性。  相似文献   

6.
提出了计算含界面相的单向纤维增强复合材料三维应力的二重双尺度方法。在性能预报方面,首先对界面相和纤维进行均匀化得到均匀化夹杂,然后对均匀化夹杂和基体进行均匀化得到宏观均匀材料;在应力场描述方面,从宏观均匀场出发,利用双尺度渐近展开技术经过两次应力场传递,依次得到单胞和应力集中区域的应力场。与有限元方法相结合,计算了宏观轴向均匀拉伸载荷条件下含界面相的单向纤维增强复合材料的三维应力场分布。数值结果表明在此载荷条件下最大应力发生在每根纤维的中截面内,靠近纤维与界面相的交界处。讨论了界面相性能对应力场分布的影响,结果显示纤维、界面相与基体力学性能的等差过渡有利于缓解纤维在界面附近的应力集中。   相似文献   

7.
残余应力对陶瓷/硬质合金复合片硬度的影响   总被引:1,自引:0,他引:1  
分析了残余剪应力对材料硬度的影响,导出了残余剪应力与硬度压头下最大剪应力的关系式.分析表明,残余剪应力与残余正应力不同,无论其方向如何,总是使材料硬度下降.通过实验证明,陶瓷/硬质合金热压复合片界面附近,残余剪应力使硬度下降的值大于由于残余压应力使硬度升高的值.据此分析认为,当陶瓷层热膨胀系数比硬质合金层小,而且太薄时,虽然可以在陶瓷层形成较大的残余压应力,但因残余剪应力的影响,表层的硬度不仅不会升高,反而会降低.  相似文献   

8.
云母和纤维组合增强聚丙烯复合材料Ⅱ.界面性能研究   总被引:4,自引:1,他引:3  
用单丝拔出法测定了云母和纤维组俣增强聚丙烯合材料中纤维与基体之间的界面结合强度,测定了云母和纤维组合增强聚丙烯复合材料的结晶温度,动态储存模量和线膨胀系数,并计算了纤维因基体体积收缩而形成的径向热残余压缩应力和基体与纤维之间的摩擦系数,研究了云母对纤维和基体界面性能的影响,结果表明,云母的加入使纤维受到的残余应力增加,摩擦系数显著下降,导致基体与纤维界面的结合强度随云母含量的增加先上升后下降。  相似文献   

9.
短纤维增强混凝土应力传递剪滞理论的改进   总被引:4,自引:0,他引:4  
张滇军  徐世烺 《工程力学》2005,22(6):165-169
根据混凝土的非线弹性性质、纤维端部应力和由于温度变化产生的温度应力对剪应力及纤维正应力的影响,对短纤维增强混凝土应力传递的剪滞理论进行改进。结合碳纤维增强混凝土分析了混凝土应变、纤维端部正应力系数和温度差对应力传递的影响。认为在混凝土弹性阶段剪应力和纤维正应力受应变影响较小,塑性阶段应变对应力传递影响较大;纤维端部应力系数对剪应力和纤维正应力表现为线性影响;剪应力与温度变化呈同方向变化,但纤维正应力不受温度影响。  相似文献   

10.
基于橡胶材料的非线性和不可压缩特性,建立细观数值模型,采用非线性有限元方法,在细观层面,通过对短纤维增强橡胶复合材料受热载荷和热-结构载荷时的应力传递分析,研究了温度对材料热弹性和失效形式的影响,探讨了对材料热应力影响的细观结构关键因素,揭示了材料的细观破坏机理。研究表明:当受热载荷时,界面处纤维受到的压应力加强了橡胶和纤维的粘合,而纤维的端部容易脱粘;材料受热-拉伸载荷时的应力是热应力及拉伸载荷产生应力的线性组合,且随着温度增大,界面脱粘失效的几率增大,纤维断裂失效的几率减小,温度的升高使复合材料的刚度急剧下降。  相似文献   

11.
The purpose of this study is to understand and improve the interfacial shear strength of metal matrix composites fabricated via ultrasonic additive manufacturing (UAM). NiTi–Al composites can exhibit dramatically lower thermal expansion compared to aluminum, yet blocking stresses developed during thermal cycling have been found to degrade and eventually cause interface failure in these composites. In this study, the strength of the interface was characterized with pullout tests. Since adhered aluminum was consistently observed on all pullout samples, the matrix yielded prior to the interface breaking. Measured pullout loads were utilized as an input to a finite element model for stress and shear lag analysis. The aluminum matrix experiences a calculated peak shear stress near 230 MPa, which is above its ultimate shear strength of 150–200 MPa thus corroborating the experimentally-observed matrix failure. The influence of various fiber surface treatments and consolidation characteristics on bond mechanisms was studied with scanning electron microscopy, energy dispersive X-ray spectroscopy, optical microscopy, and focused ion beam microscopy.  相似文献   

12.
A cruciform specimen test and a single-fiber pull-out test are used to examine two glass–epoxy interface-failure envelopes under a combined stress state. A single fiber embedded in various off-axis directions for the cruciform specimen test creates various combined stress states. Finite-element analysis considering an inelastic constitutive equation of matrix resin and thermal residual stress is implemented for both tests. For the single-fiber pull-out test, a resin cone serving as the fiber entrance part, called the resin meniscus in this study, is modeled in finite-element analysis. This enables more precise calculation of interface stress around the interface failure point than calculations not considering the resin meniscus. The interface failure strengths obtained using the cruciform specimen and single-fiber pull-out tests show good agreement for both interfaces.  相似文献   

13.
This paper presents the Molecular Dynamic (MD) models and the simulation results for the shear deformation process of an interface representative cell to develop an understanding of the roles of multi-walled carbon nanotube (MWNT) in enhancing fiber–matrix interfacial properties such as shear modulus and strength. Based on the MD results and the two simple formulae of rule of mixture, the shear modulus and strength of the carbon nanotube (CNT) grafted interface can be predicted. It is shown that there exists a good agreement between the predicted fiber–matrix interfacial shear strength with and without grafted CNTs and these measured from single-fiber micro bond test and single-fiber fragmentation test. The MD simulation also shows the MWNTs’ shear stress cross-section distribution is similar to that of a circular beam in shear with a non-zero shear stress on the neutral plane.  相似文献   

14.
The interfacial bond strength of long high-strength steel fibers embedded in ultra-high-performance concrete (UHPC) reinforced with short steel microfibers was investigated by conducting single-fiber pullout tests. In particular, the influence of the addition of a shrinkage-reducing to a UHPC matrix on the pullout resistance of high-strength steel fibers was investigated. The addition of a shrinkage-reducing agent produced a noticeable reduction in the fiber pullout resistance owing to the lower matrix shrinkage, although the reduction of pullout resistance differed according to the type of fiber. Long smooth and twisted steel fibers were highly sensitive to the addition of the shrinkage-reducing agent whereas hooked fibers were not. Among the various high-strength steel fibers tested, twisted steel macrofibers showed the highest interfacial bond resistance, although twisted fibers embedded in UHPC showed slip softening pullout behavior rather than the typical slip hardening behavior observed in mortar.  相似文献   

15.
A three-dimensional finite element micromechanical model was developed to study effects of thermal residual stress, fiber coating and interface bonding on the transverse behavior of a unidirectional SiC/Ti–6Al–4V metal matrix composite (MMC). The presented model includes three phases, i.e. the fiber, coating and matrix, and two distinct interfaces, one between the fiber and coating and the other between coating and matrix. The model can be employed to investigate effects of various bonding levels of the interfaces on the initiation of damage during transverse loading of the composite system. Two different failure criteria, which are combinations of normal and shear stresses across the interfaces, were used to predict the failure of the fiber/coating (f/c) and coating/matrix (c/m) interfaces. Any interface fails as soon as the stress level reaches the interfacial strength. It was shown that in comparison with other interface models the predicted stress–strain curve for damaged interface demonstrates good agreement with experimental results.  相似文献   

16.
A three dimensional micromechanics based analytical model is presented to investigate the effects of initiation and propagation of interface damage on the elastoplastic behavior of unidirectional SiC/Ti metal matrix composites (MMCs) subjected to off-axis loading. Manufacturing process thermal residual stress (RS) is also included in the model. The selected representative volume element (RVE) consists of an r × c unit cells in which a quarter of the fiber is surrounded by matrix sub-cells. The constant compliance interface (CCI) model is modified to model interfacial de-bonding and the successive approximation method together with Von-Mises yield criterion is used to obtain elastic–plastic behavior. Dominance mode of damage including fiber fracture, interfacial de-bonding and matrix yielding and ultimate tensile strength of the SiC/Ti MMC are predicted for various loading directions. The effects of thermal residual stress and fiber volume fraction (FVF) on the stress–strain response of the SiC/Ti MMC are studied. Results revealed that for more realistic predictions both interface damage and thermal residual stress effects should be considered in the analysis. The contribution of interfacial de-bonding and thermal residual stress in the overall behavior of the material is also investigated. Comparison between results of the presented model shows very good agreement with finite element micromechanical analysis and experiment for various off-axis angles.  相似文献   

17.
The level of fiber–matrix interfacial adhesion in composites is traditionally evaluated by means of a stress-based parameter. Recently, it was suggested that an interfacial energy parameter might constitute a valid alternative. From an overview of the literature regarding the single-fiber composite fragmentation test, it appears that energy-based approaches have already been proposed in the past, but were either not successful, or not fully developed. Our recent energy balance scheme, proposed for the analysis of the initial interface debonding which occurs at fiber breaks during a fragmentation test, is presented and expanded here. The effects of thermal residual stress in the fiber, and of friction in the debonded area, are now incorporated in the energy balance model. We use a different shear-lag parameter proposed by Nayfeh, rather than the commonly used Cox parameter. New, extensive single-fiber fragmentation data regarding the interface crack initiation regime is presented, using sized and unsized E-glass fibers embedded in UV-curable or epoxy polymers. Some data for unsized carbon in epoxy is also presented. Fiber fragmentation is forced to take place entirely in the linear elastic region of the stress–strain curve, by means of pre-stressed single fibers. The importance of this procedure is discussed. Future work will focus on the interface crack propagation regime.  相似文献   

18.
We performed a numerical simulation of a time-dependent interfacial failure accompanied by a fiber failure, and examined their evolution under shear and compressive loads in single-fiber composites. The compressive load on the interface consists of Poisson’s contraction for matrix resin subjected to longitudinal tensile load. As time progresses, compressive stress at the interface in the fiber radial direction relaxes under the constant longitudinal tensile strain condition for the specimen, directly causing the relaxation of the interface frictional stress. This relaxation facilitates the failure of the interface. In this analysis, a specific criterion for interface failure is applied; apparent interfacial shear strength is enhanced by compressive stress, which is referred as quasi-parabolic criterion in the present study. The results of the stress recovery profile around the fiber failure and the interfacial debonding length as a function of time simulated by the finite element analysis employing the criterion are very similar to experimental results obtained using micro-Raman spectroscopy.  相似文献   

19.
An improved analysis considering the effects of interface roughness and thermal residual stresses in both radial and axial directions is developed for the single fiber push-out test. The roughness of the interface, which has a significant effect on the fiber sliding behavior, is expressed by a Fourier series expansion that has good convergence and can handle general shapes of roughness. The interfacial shear stress that plays an important role in interfacial debonding is very much affected by the axial thermal residual stress in the bonded region, which can induce a two-way debonding mechanism. It has been found that both residual stress and interface roughness have pronounced effects on the stress transfer across the interface and interfacial debonding behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号