首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Nickel catalyst is an effective catalyst for reforming CH4 with CO2. The reaction between CO2 and CH4 at 1073 K. in the pressure of 0·1 MPa has been studied over different materials supported nickel metal in a fixed-bed reactor. Different catalysts before and after reaction were characterized by SEM, XRD, XPS. Results shows that CO and H2 are basically produced at the same ratio. When the feed ratio CO2/CH4 is less than 0·5, less C2?C4 hydrocarbons are detected. When the feed ratio CO2/CH4 is 1, Ni/a- Al2O3 catalyst has the highest activity. However, when the feed ratio CO2/CH4 is greater than 1, Ni/y- A1/O3, Ni/a- A12O3, Ni/SiO2 and Ni/HZSM-5 had higher activity; Ni/clinoptilolite basically no activity. Different kinds of carbon deposit are established.  相似文献   

2.
Different γ-Al2O3-TiO2 catalysts were tested in a pilot plant fixed-bed reactor in order to evaluate the effect of atomic ratio (Ni/Ni + Mo) on hydrotreating activity of heavy gasoil FCC feed. Hydrotreating reactions were carried out at three temperatures (330, 365, and 400°C) and LHSV of 6 h-1. Studies of atomic ratio were done varying Ni amounts (2, 2.4, and 2.95 wt%) whereas molybdenum loading was kept constant (6 wt%) for all catalysts, the behavior of these catalysts was compared with a reference catalyst containing 11.5 wt% of Mo and 2.95 wt% of Ni, which was evaluated at the same conditions. All catalysts were prepared by incipient impregnation method over γ-Al2O3-TiO2 (Ti = 5.6 wt%). Experimental results showed correlation between the atomic ratio (Ni/Ni + Mo) and the best results for hydrodemetallization where found for the catalyst with atomic ratio of (Ni/Ni + Mo) = 0.45.  相似文献   

3.
Positron annihilation spectroscopy for chemical analysis (PASCA), powder x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were used to study the effect of calcination temperature on active metal dispersion of wax hydrofining catalyst. The experimental results showed that, with the increase of calcination temperature, the metal Ni and the support Al2O3 interaction became weaker. When calcination temperature reached 280°C, Ni(NO3)2 began to decompose and the inhibition effect of NO3- began to diminish. At 380°C, Ni(NO3)2 was almost decomposed, and NiO still had a high dispersion on the catalyst surface. At 440°C or higher, Ni(NO3)2 was completely decomposed, and to some extent, NiO aggregated on the catalyst surface in the form of noncrystalline clusters (atomic clusters). The most suitable calcination temperature in the experiment for the catalyst Ni/Al2O3 was 440°C or a little higher.  相似文献   

4.
通过焙烧由共沉淀法制备的NiMgAl-Mo7O246-类水滑石,制备了一系列不同MoO3质量分数(0、10%、15%、20%、25%和30%)的Ni/Mo/MgAl(O)复合氧化物催化剂。将该催化剂用于甲烷干重整(DRM)反应中,并研究了MoO3的含量对催化剂性能的影响。借助XRD、BET、H2-TPR、CO化学吸附、CO2-TPD以及O2-TPO等表征手段研究了催化剂结构和性能之间的关系。结果表明,催化剂的催化活性和抗积炭性能与MoO3含量有关,当MoO3的负载量为15%时,催化剂的催化活性和稳定性最佳,其在GHSV=60000 mL/(g·h),800℃反应57 h后,甲烷转化率仍维持在66%以上。较大的比表面积、强的金属与载体作用力、较高的金属分散度、适量的酸性和碱性位点数以及Ni-Mo双金属合金的协同作用,使得催化剂具有较好的催化活性和较强的抗积炭能力。  相似文献   

5.
The reaction between CO2and CH4was carried out in a fixed-bed continuous flow reactor over y-alumina supported nickel metal, reaction temperature was 773-1073°K and reaction pressure 0.1-0.13MPa with different ratios of CH4C02. Catalysts were characterized by SEM, XRD, XPS and IJTA. It was found that Ni/y-alumina had higher activity, selectivity and stability when it was made in strong acid(pH≤2) or strong base (pH≤ll) solution. In this reaction syngas with lower ratios of H2/CO was produced.  相似文献   

6.
Asphaltene onset concentration and bulk deposition were measured for a typical live reservoir oil titrated with n-C6H14, n-C5H12, n-C4H10, C3H8, C2H6, CH4 and CO2 at 100° C (212 ° F) and 29.9 MPa (4340 psia). The concentration of titrant at asphaltene onset was observed to decrease approximately in a linear fashion with decreasing molecular weight of the paraffinic solvent; CH4 did not induce any asphaltene precipitation. Bulk deposition experiments were performed using a solvent: oil volume ratio of 10:1; the results indicated that the weight percent of asphaltenes precipitated increased exponentially with decreasing molecular weight of the paraffinic solvents. More importantly, the asphaltene molecular weight showed a maximum for n-C4H10 precipitated asphaltenes. Possible explanations for this unusual result are presented.  相似文献   

7.
 以Ni-Al水滑石为前驱体,采用水热合成法,制备了不同CeO2含量的αCeO2-Ni/Al2O3催化剂,通过XRD、N2吸附-脱附、CO2-TPD和原位漫反射红外分析(DRIFT)等手段,表征了制备催化剂的微观结构和物化性质,评价了其对CO2甲烷化反应的催化活性及稳定性,并进一步研究其催化CO2甲烷化反应的机理。结果表明:制备催化剂主要为介孔结构,表面有较多的弱碱和中强碱性位点;CeO2的适量引入可提高Ni-Al2O3催化剂低温催化CO2甲烷化的活性,其中以CeO2负载摩尔分数5%的催化剂性能最好,在250 ℃时,CO2转化率可达91%,CH4选择性可达100%,且经120 h的稳定性测试后,活性无明显下降;CO2甲烷化时,催化剂表面产生中间产物甲酸盐和双齿碳酸盐,其有利于CH4的生成。  相似文献   

8.
For good physical and chemical proprieties of ZSM-5 and its selectivity to higher hydrocarbons it is selected as support carrier. In this paper CH4 reforming with CO2 to synthesize heavier hydrocarbons over Ni/ZSM-5 catalyst is investigated. The reforming reaction is operated at 1073K under the ambient pressure in a fixed-bed tabular reactor. As promoter rare earth oxides, La2O3, CeO2, Pr6O11 and Nd2O3 are separately added to Ni/ZSM-5 and Ni-La/ZSM-5(NZL), Ni-Ce/ZSM-5(NZC), Ni-Pr/ZSM-5(NZP) and Ni-Nd/ZSM-5(NZN) are formed accordingly. For convenience, they are recorded as Ni-RE/ZSM-5. When these catalysts are used in the reforming reaction the yield of heavier hydrocarbons is obviously increased. The structure of Ni-RE/ZSM-5 catalysts before and after reaction is systematically characterized by XRD, XPS, TEM, SEM, ICP and FTIR. After 10 hours reaction there are more carbon deposit on Ni-RE/ZSM-5 catalyst than Ni/ZSM-5, but their structure are not destroyed and carbon deposit is easy gasified.  相似文献   

9.
Used ZrO2 modified γ-Al2O3 as support, Co-Ru catalysts were prepared by incipient impregnation method. The effects of impregnation solvents on the performances of catalysts were examined. The catalyst was prepared with ethanol solution and high Co dispersion was obtained, exhibiting highest activity of CO hydrogenation, very low methane selectivity, and high heavy hydrocarbon C5+ selectivity. The catalysts were prepared with aqueous solution and methanol solution, and the reaction behaviors were similar. The solvent isopropanol caused the lowest catalytic activity and highest methane selectivity. Increasing the reaction temperature enhanced the CO hydrogenation rate, and the CO conversion slightly increased the CO2 selectivity and favored the formation methane and light hydrocarbons, while the chain growth probability decreased. For the catalyst prepared with ethanol, the CO conversion, the CH4 selectivity, and the C5+ selectivity were 94.16%, 5.65%, and 88.2%, respectively, and the chain growth probability was 0.87 at 493 K, 1.5 MPa, 800 h-1, and n(H2):n(CO) = 2.0 in feed.  相似文献   

10.
The CoMo/TiA catalyst for hydrodesulfurization (HDS) and its composite support TiA with industrial scale had been produced through the certain process and the studied range of ratio of TiO2/(TiO2 + Al2O3) was enlarged. The good properties of the support TiA were attributed to its special pore structure. When the ratio of TiA/(TiA + Al2O3) was 0.80, the specific surface area of the support and its pore volume reached their maximum respectively. The range of atom ratio of Co/(Co + Mo) of the catalyst CoMo/TiA from 0.25-0.31 proved best, during which activity of the catalyst reached the maximum. The disperse state of TiO2 on the surface of TiA and effect of the promoter Co content on the surface structure of the catalyst had been studied by XRD, LRS and XPS. The analytic results showed that 0.47 g TiO2/g γ-Al2O3 was the schwellenwert for the coverage of TiO2 on the surface of TiA. Beyond this, TiO2 lies on the surface of TiA with a single layer; otherwise, it existed in the form of TiO2 crystal phase (anatase phase). When adding a few promoters Co into the catalyst, the dispersity of MoO3 on the surface of the support TiA increased remarkably and activity of this catalyst was also improved.  相似文献   

11.
CH4、CO2、稀有气体的溶解度模型在地球科学领域应用广泛。它们的溶解度模型在研究流体包裹体的均一化压力、古气温变化、天然气运移与聚集规律、富氦天然气成藏、储层中气—水体积比等方面发挥着重要作用。主要综述了纯水与NaCl水溶液中CH4、CO2、稀有气体溶解度研究的新进展。重点介绍了精度高且适用性广的模型的建立过程及其适用范围,并给出了部分模型的计算结果。包括:①0~250 °C、0.1~200 MPa、0~6.0 mol/kg NaCl溶液中CH4的溶解度模型;②0~450 °C、0.1~150 MPa、0~4.5 mol/kg NaCl溶液中CO2的溶解度模型;③0~80 °C范围内大气稀有气体溶解度与亨利常数的计算模型;④纯水中稀有气体亨利常数计算模型;⑤0.1 MPa、0~65 °C、0~5.8 mol/kg NaCl溶液中稀有气体的溶解度模型。CH4与CO2的溶解度模型复杂,但精度高,适用范围广。稀有气体溶解度模型的精度相对较低,适用范围相对较小,有待进一步提高与改进。CO2—稀有气体—水体系中,低密度的CO2对稀有气体溶解度的影响较小,而高密度的CO2对稀有气体的溶解度有较大的影响。目前还无法判断CH4—CO2—稀有气体共存时对彼此溶解度的影响程度,其混合气的溶解度模型需要加强研究。  相似文献   

12.
The effects of the impregnating conditions on the contents of the active components of a new type hydrodesulfurization (HDS) catalyst have been studied by ICP technique in this paper. Meanwhile, the effects of the activation temperature, the activation time and the calcining temperature on the catalytic properties of the CoMo/(TiO2 + Al2O3) catalyst have also been studied. The results show that at the given hygroscopicity of the support, the contents of the Co and the Mo, both of which are the active components of the catalyst, change linearly with the changes of the concentrations of the solvents in the impregnant. When the catalyst is impregnated at 40°C for 2 h, the contents of the active components reach the maximum values. The calcining temperature sharply affects the dispersed state of the active components on the surface of the support. When calcined at 500°C for 2 h, this HDS catalyst obtains the best catalytic activity. Even when the catalyst has been calcined at 600°C for 3 h, its activity is still good, which indicates that the heat resistance of this new type catalyst is satisfactory.  相似文献   

13.
In this article, the preparation and application of a nonhydrogenation-reducing olefin catalyst were studied. The carrier of this catalyst was synthesized by γ-Al2O3 and SiO2. It was found that the optimum molar ratio was 1:1 and the more suitable synthetic temperature was 80°C. The catalyst consisted of transition element Ni, W loading on the carrier that was self-made. Meanwhile, the properties of the catalyst were determined by an x-ray diffraction pattern (XRD), N2-adsorption, and an FT-IR spectrophotometer. In order to study the performance of the catalyst, it was dried and calcined, and then it was reacted with the feed gasoline on the small fixed vector. The results showed that the content of olefins in fluid catalytic cracking (FCC) gasoline had been reduced from 51.0% to 25.6% when the reaction temperature was 170°C, the space velocity was 1.5 h-1, and the reaction pressure was 2.5 MPa. The experimental results showed that the method of the catalytic preparation was simple and convenient, the activity of the catalyst was very high, and the regeneration and stability were also very good. The olefin content was reduced by more than 20% in FCC gasoline; the original octane number was not changed. Therefore the quality of the gasoline would meet the new gasoline standard (GB). The catalyst had very high industrial application value.  相似文献   

14.
The kinetics of methylcyclohexane aromatization on commercial Pt/Al2O3 and Pt-Re/Al2O3 catalysts was investigated in a micro-reactor using N2 and/or H2 as carrier gases at temperatures ranging between 300-500°C, W/F values ranging between 0.83-3.75 mg min/mL and at a total pressure of 4.0 kg/cm2. On both catalysts in N2 atmosphere, aromatization accompanied by demethylation was observed with the formation of cracked products, benzene and toluene. However, in H2 methane was the predominant product of methylcyclohexane reforming on PtA12O3 and Pt-Re/Al2O3 at 500°C and 400-500°C respectively, whereas at 350°C, aromatization was predominant on Pt/Al2O3 but on Pt-Re/Al2O3, aromatization was accompanied by fragmentation to methane. In N2-H2 mixtures, demethylation activity was observed to decrease with H2 content of the mixture on Pt-Re/Al2O3. A preliminary test of the kinetic data using Sica's method of pulse kinetic analysis suggests a first order rate in methylcyclohexane with activation energies of 3.21 kcal/gmol in N2 and 19.70 kcal/gmol in H2 for the Pt/Al2O3 catalyst and 16.66 kcal/gmol in N2 and 34.94 kcal/gmol in H2 for the Pt-Re/Al2O3 catalyst. However, a more comprehensive kinetic analysis suggested an aromatization mechanism for Pt-Re/Al2O3, where adsorbed H2 was a participant. A different aromatization mechanism for the reaction in N2 where hydrogen was not needed explained the data on Pt/Al2O3. In both cases, the desorption of toluene was determined as the rate determining step.  相似文献   

15.
����ת��Ϊ�״�������ȼ�ϵ�ϵͳ   总被引:3,自引:0,他引:3  
由化石燃料燃烧排放的CO2对全球生态环境,经济发展、人类健康和生活质量将产生深远影响;将CO2储存在地下和海洋中,或开发利用CO2新途径,均可减少大气中CO2的浓度,更为积极的措施是改变能源消费结构,提高能源利用率,通过甲烷(CH4)转化为甲醇(CH3OH)并用它作运输燃料将有效地减少CO2对大气的排放。论述了在CH4制合成所和CH3OH合成新工艺研究上所取得的进展。  相似文献   

16.
Due to environmental constraints, sulfur content of diesel fuel has been restricted to very low levels (500 ppm maximum) in many countries. As a result, a greater emphasis has been placed in recent years on the development of catalysts and processes for deep desulfurization of diesel blending streams to produce low sulfur diesel fuel. In the present work we have compared the performance of a conventional Co-Mo catalyst with that of high metal loading Co-Mo and Ni-Mo catalysts in deep desulfurization of Kuwait atmospheric gas oil. The tests were carried out in a fixed bed reactor unit using 75 ml of catalyst under the conditions: P=32 bar; LHSV = 4h-1; H2/oil ratio = 100 ml/ml; temperature range = 330 - 390°C. HDS activity of the high molybdenum Co-Mo catalyst was superior to that of the conventional Co-Mo hydrotreating catalyst. High metal loading Co-Mo/Al2O3 catalyst also showed a substantially higher HDS activity than the Ni-Mo/Al2O3 catalyst containing a similar high metal loading. The unreacted sulfur compounds remaining in the product after high severity hydrotreating were identified as dibenzothiophenes with alkyl substituents next to the sulfur atom. The desulfiirization of such low reactive alkyl dibenzothiophenes was found to occur at a substantially lower temperature over the high metal loading Co-Mo catalyst compared with the conventional Co-Mo catalyst. The results have been explained on the basis of the stacking and dispersion of MoS2 slabs as well as in terms of the nature of the sulfur vacancies in the MoS2 layers in these catalyst systems.  相似文献   

17.
A pilot plant investigation was conducted to study the influence of hydrotreating conditions on conversion and characteristics of diesel blend and to determine the severity of operating conditions required to meet the proposed product specifications for diesel fuel in India. A typical diesel blend derived from various refinery streams with sulphur content of 2·06 wt% was hydrodesulphurised over a commercial NiO-MoO3/Al2O3 catalyst in a pilot plant trickle bed reactor. The experiments were conducted at 300-370°C, 30-50 kg/cm2, 2·0 3·0 hr-1 liquid hourly space velocity and constant H2/oil ratio of 185 m3/m3. The data showed that the diesel blend could be hydrotreated to meet revised product specifications of 0·25 wt% sulphur, 46 cetane number by increasing the severity of operation. The cetane number and aromatic saturation were limited by thermodynamic equilibrium at temperatures above 360°C. The influence of temperature was found to be more pronounced than that of pressure in the range of operating conditions studied.  相似文献   

18.
An estimate of the quantity of toxic coke deposited on fresh and regenerated Pt/Alj2O3 catalyst has been determined for methylcyclopentane (MCP) reforming in a Berty CSTR at 390°C, W/F=0·11 g min cm-3, total pressure of 1 atm and MCP partial pressure of 9·2 × 10-2 atm in H2 or N2 carrier. Eleven cycles consisting each of catalyst deactivation, regeneration and reduction were investigated with 3 in H2 and 8 in N2. Oxidizable (primary) coke deposits were higher in N2. However, higher levels of toxic (secondary) coke were deposited in H2. The ratio of oxidizable to toxic coke lies between 1-15×103 in H2 and 22 - 55 × 103 in N2 The coke-time profiles for secondary coke removal exhibited maxima suggestive of three types of secondary coke with varying reactivity in H2. Furthermore, the results strongly suggest that the cokes were layered on acidic coke forming sites with the solid phase transformation of primary to secondary coke occurring at the catalyst-coke interface.  相似文献   

19.
The total solid paraffins (boiling 270°C+) separated from Mukta crude by urea adduction and its narrow fractions were analysed for their structural composition by proton NMR, infrared spectroscopy and gas chromatography. It has been observed that CH2/CH3 ratio in these samples varies from 7·9 to 13·8 while their average carbon number ranges from 17 to 29·6. The CH2/CH3 ratio and chain length of paraffins increases with increase in boiling range of the fractions.  相似文献   

20.
天然气水合物储量巨大,是未来极具开发潜力的清洁能源。CO_2置换法兼具能源开采与温室气体封存的双重功效,但通常CO_2对CH_4的置换速率非常低。为此,结合抑制剂存在条件下CH_4水合物和CO_2水合物具有不同的热力学稳定性这一特点,提出并通过实验证实了一种可用于开采天然气水合物的新方法,它将CO_2置换法与注热力学抑制剂的工艺相结合,实现了CH_4水合物分解过程的加速。通过岩心驱替实验,对比考察了两类3种常见CH_4水合物热力学抑制剂(甲醇、氯化钠和氯化镁)的作用效果。实验结果表明:在甲醇溶液作用下,CH_4水合物分解速率高达0.011 94 mol/h,远高于电解质盐溶液的作用效果(分别为0.000 86 mol/h和0.001 41 mol/h)。选择甲醇溶液作为水合物分解加速剂,通过前期注入甲醇溶液段塞、后期连续注入CO_2的方式,使得CH_4水合物分解率超过92%,且实现了CO_2气体以水合物形式的封存固定,最终CO_2水合物的生成量占到初始甲烷水合物总量的16%~27%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号