首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(16):18657-18665
The present study has been conducted in order to investigate the effect of the surface morphology of SiC inner coating on the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating for C/C composites. The microstructure of SiC inner coatings prepared by chemical vapor deposition and pack cementation at different temperatures were analyzed by X-ray diffraction, scanning electron microscopy, and 3D Confocal Laser Scanning Microscope. Tensile bonding strength and oxyacetylene ablation testing were used to characterize the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating, respectively. Results show that SiC inner coating prepared by chemical vapor deposition has a smooth surface, which is not beneficial to improve the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating. SiC inner coating prepared by pack cementation at 2000 °C has a rugged surface with the roughness of 72.15 µm, and the sprayed ZrB2-SiC coating with it as inner layer exhibits good bonding strength and ablation resistance.  相似文献   

2.
In this study, C/C–SiC–ZrC composites coated with SiC were prepared by precursor infiltration pyrolysis combined with reactive melt infiltration. The pyrolysis behavior of the hybrid precursor was investigated using thermal gravimetric analysis-differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy techniques. The microstructure and ablation behavior of the composites were also investigated. The results indicate that the composites exhibit an interesting structure, wherein a ceramic coating composed of SiC and a small quantity of ZrC covers the exterior of the composites, and the SiC–ZrC hybrid ceramics are partially embedded in the matrix pores and distributed around the carbon fibers as well. The composites exhibit good ablation resistance with a surface temperature of over 2300 °C during ablation. After ablation for 120 s, the mass and linear ablation rates of the composites are 0.0026 g/s and 0.0037 mm/s, respectively. The great ablation resistance of the composites is attributed to the formation of a continuous phase of molten SiO2 containing SiC and ZrO2, which seals the pores of the composites during ablation.  相似文献   

3.
To improve the ablation resistance of carbon/carbon (C/C) composites, a TaC coating was prepared by supersonic plasma spraying on SiC coated C/C composites. The microstructure and morphology of the coatings were characterised by Scanning Electron Microscopy and X-ray diffraction. The ablation properties were studied at different temperatures under oxyacetylene torch. At 2100 °C, the oxides were blown away and resulted in high ablation rates: 1.2×10?2 mm/s and 3.9×10?3 g/s. However, most oxides can remain in ablation centre and serve as a coating at low temperature (1900 and 1800 °C). Therefore, the TaC/SiC coated samples exhibited zero linear ablation rate and lower mass ablation rate.  相似文献   

4.
C/C–ZrC–SiC composites were prepared by precursor infiltration and pyrolysis process using a mixture solution of organic zirconium-containing polymer and polycarbosilane as precursors. Porous carbon/carbon (C/C) composites with density of 0.92, 1.21 and 1.40 g/cm3 were used as preforms, and the effects of porous C/C density on the densification behavior and ablation resistance of C/C–ZrC–SiC composites were investigated. The results show that the C/C preforms with a lower density have a faster weight gain, and the obtained C/C–ZrC–SiC composites own higher bulk density and open porosity. The composites fabricated from the C/C preforms with a density of 1.21 g/cm3 exhibit better ablation resistance with a surface temperature of over 2400 °C during ablation. After ablation for 120 s, the linear and mass ablation rates of the composites are as low as 1.02 × 10−3 mm/s and −4.01 × 10−4 g/s, respectively, and the formation of a dense and continuous coating of molten ZrO2 solid solution is the reason for their great ablation resistance.  相似文献   

5.
《Ceramics International》2017,43(3):3238-3245
In this study, SiC coating for C/C composites was prepared by pack cementation method at 1773 K, and MoSi2-SiOC-Si3N4 as an outer coating was successfully fabricated on the SiC coated samples by slurry method at 1273 K. The microstructure and phase composition of the coatings were analyzed. Results showed that a porous β-SiC inner coating and a crack-free MoSi2-SiOC-Si3N4 coating are formed. Effect of Si3N4 content on the oxidation resistance of the coated C/C composites at 1773 K in air was also investigated. The weight loss curves revealed that introducing the appropriate proportion of Si3N4 could improve the oxidation resistance of coating. The MoSi2-SiOC/SiC coated C/C sample had an accelerated weight loss after oxidation in air for 20 h. However, the coating containing 45% Si3N4 could protect C/C composition from oxidation for 100 h with a minute weight loss of 0.63%.  相似文献   

6.
To improve the ablation resistance of carbon/carbon composites in cyclic ablation environment, SiC/HfC ceramic coating reinforced by HfC nanowires was prepared. The microstructure, bonding strength, coefficient of thermal expansion and cyclic ablation resistance of the as-prepared coating were investigated. After incorporating HfC nanowires, the bonding strength between inner SiC coating and outer HfC coating was increased. HfC nanowires could relieve the coefficient of thermal expansion mismatch between inner and outer coating and improve the toughness of the outer coating. By introducing HfC nanowires, the coated sample’s cyclic ablation resistance was improved. After cyclic ablation under oxyacetylene flame for 60 s × 3, the mass and linear ablation rates of the coated sample with HfC nanowires were only 0.444 mg/s and −0.767 μm/s, respectively.  相似文献   

7.
《Ceramics International》2016,42(15):16804-16812
A WC-SiC double-layer coating was prepared on C/C composites to improve their anti-ablation property. The WC outer layer was designed to withstand high heat flux by its high mechanical strength, the SiC inner layer could transform into SiO2 to block oxygen by its good anti-oxygen permeability. During ablation process, amounts of SiO2 filled into the pores and cracks of WC outer layer, forming a steadily self-filling and cooling structure. As a result, the mass and linear ablation rates of WC-SiC coated C/C composites were 0.013 mg s−1 cm2 and −1.61 µm/s, respectively. Compared with single SiC coated and single WC coated C/C composites, the linear ablation rates decreased by 46.3% and 27.3%, respectively, indicating that WC-SiC coating has a remarkable effect to resist chemical and mechanical ablation.  相似文献   

8.
《Ceramics International》2016,42(4):4768-4774
In order to improve the ablation properties of carbon/carbon composites, HfC–SiC coating was deposited on the surface of SiC-coated C/C composites by supersonic atmospheric plasma spraying. The morphology and microstructure of HfC–SiC coating were characterized by SEM and XRD. The ablation resistance test was carried out by oxyacetylene torch. The results show that the structure of coating is dense and the as-prepared HfC–SiC coating can protect the C/C composites against ablation. After ablation for 30 s, the linear ablation rate and mass ablation rate of the coating are −0.44 μm/s and 0.18 mg/s, respectively. In the ablation center region, a Hf–Si–O compound oxide layer is generated on the surface of HfC–SiC coating, which is conducive to protecting the C/C composites from ablation. With the ablation time increasing to 60 s, the linear ablation rate and mass ablation rate are changed to −0.38 μm/s and 0.26 mg/s, respectively. Meanwhile, the thickness of the outer Hf–Si–O compound layer also increases.  相似文献   

9.
Tao Feng  He-Jun Li  Qian-Gang Fu  Xi Yang  Heng Wu 《Carbon》2012,50(6):2171-2178
The high-temperature erosion resistance of multi-layer MoSi2–CrSi2–Si/SiC coated carbon/carbon (C/C) composites was investigated in a wind tunnel. To study the aerodynamic oxidation mechanism and analyze the failure of the coated C/C composites, the shear force and bending moment distribution of the tested specimens in a wind tunnel were calculated. Flexural strengths and thermogravimetric analysis of the coated specimens were measured. These results show that the multi-layer MoSi2–CrSi2–Si/SiC antioxidation coating can protect the C/C composites from high-temperature erosion in a wind tunnel at 1873 K for more than 86 h. Due to the high viscosity of SiO2, the multi-layer coating lacked effective oxidation resistance from 900 to 1500 K, resulting in extensive mechanical damage and the fracture of the tested specimens.  相似文献   

10.
《Ceramics International》2016,42(11):12573-12580
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperature, a SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, mechanical properties and oxidation resistance of the coating were investigated. After the introduction of SiC nanowires, the elastic modulus, hardness, and fracture toughness of the MoSi2-WSi2-SiC-Si coating were increased by 25.48%, 4.09% and 45.03%, respectively. The weight loss of the coated sample with SiC nanowires was deceased from 4.83–2.08% after thermal shock between 1773 K and room temperature for 30 cycles and the weight loss is only 3.24% after isothermal oxidation at 1773 K in air for 82 h. The good oxidation resistance of the coating is mainly attributed to that SiC nanowires can effectively inhibit the propagation of cracks in the coating by the toughening mechanisms including bridging and pull-out.  相似文献   

11.
To improve the oxidation resistance of the carbon/carbon (C/C) composites, a TaB2–SiC–Si multiphase oxidation protective ceramic coating was prepared on the surface of SiC coated C/C composites by pack cementation. Results showed that the outer multiphase coating was mainly composed of TaB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The coating could protect C/C from oxidation for 300 h with only 0.26 × 10?2 g2/cm2 mass loss at 1773 K in air. The formed silicate glass layer containing SiO2 and tantalum oxides can not only seal the defects in the coating, but also reduce oxygen diffusion rates, thus improving the oxidation resistance.  相似文献   

12.
In order to improve the oxidation protective ability of SiC-coated carbon/carbon (C/C) composites, a SiC–Si–ZrB2 multiphase ceramic coating was prepared on the surface of SiC-coated C/C composite by the process of pack cementation. The microstructures of the coating were characterized using X-ray diffraction and scanning electron microscopy. The coating was found to be composed of SiC, Si and ZrB2. The oxidation resistance of the coated specimens was investigated at 1773 K. The results show that the SiC–Si–ZrB2 can protect C/C against oxidation at 1773 K for more than 386 h. The excellent oxidation protective performance is attributed to the integrity and stability of SiO2 glass improved by the formation of ZrSiO4 phase during oxidation. The coated specimens were given thermal shocks between 1773 K and room temperature for 20 times. After thermal shocks, the residual flexural strength of the coated C/C composites was decreased by 16.3%.  相似文献   

13.
《Ceramics International》2016,42(3):4212-4220
To improve the oxidation protective ability of SiC–MoSi2–ZrB2 coating for carbon/carbon (C/C) composites, pre-oxidation treatment and pack cementation were applied to construct a buffer interface layer between C/C substrate and SiC–MoSi2–ZrB2 coating. The tensile strength increased from 2.29 to 3.35 MPa after pre-oxidation treatment, and the mass loss was only 1.91% after oxidation at 1500 °C for 30 h. Compared with the coated C/C composites without pre-oxidation treatment, after 18 thermal cycles from 1500 °C and room temperature, the mass loss was decreased by 30.6%. The improvements of oxidation resistance and mechanical property are primarily attributed to the formation of inlaid interface between the C/C substrate and SiC–MoSi2–ZrB2 coating.  相似文献   

14.
《Ceramics International》2017,43(8):6138-6147
In order to improve the ablation resistance of carbon/carbon (C/C) composites, SiC-ZrB2 di-phase ceramic were introduced by reactive melt infiltration. The ablation properties of these composites were evaluated by oxyacetylene torch with a heat flux of 2.38 MW/m2 for 60 s. Compared with the pure C/C composites, the C/C-SiC-ZrB2 composites show a significant improvement in the ablation resistance, and the linear and mass ablation rates decreased from 10.28×10−3 mm/s to 6.72×10−3 mm/s and from 3.08×10−3 g/s to 0.61×10−3 g/s, respectively. After ablation test, the flexural strength retentions of the C/C and C/C-SiC-ZrB2 composites near the ablated center region are 39.7% and 81.6%, respectively. The higher strength retention rate of C/C-SiC-ZrB2 composites was attributed to the introduction of SiC-ZrB2 ceramic phases, which have excellent ablation resistant property. During ablation test, an ‘embedding structure’ of Zr-O-Si glass layer was formed, which could act as an effective barrier for oxygen and heat. The oxide ceramic coating could protect the C/C-SiC-ZrB2 composites from further ablation, and thus contribute to retaining the mechanical property of C/C-SiC-ZrB2 composites after ablation.  相似文献   

15.
C/C–ZrC–SiC composites with continuous ZrC–SiC ceramic matrix were prepared by a multistep technique of precursor infiltration and pyrolysis process. Ablation properties of the composites were tested under an oxyacetylene flame at 3000 °C for 120 s. The results show that the linear ablation rate of the composites was about an order lower than that of pure C/C and C/C–SiC composites as comparisons, and the mass of the C/C–ZrC–SiC composites increased after ablation. Three concentric ring regions with different coatings appeared on the surface of the ablated C/C–ZrC–SiC composites: (i) brim ablation region covered by a coating with layered structure including SiO2 outer layer and ZrO2–SiO2 inner layer; (ii) transition ablation region, and (iii) center ablation region with molten ZrO2 coating. Presence of these coatings which acted as an effective oxygen and heat barrier is the reason for the great ablation resistance of the composites.  相似文献   

16.
To improve the anti-oxidation and ablation properties of carbon/carbon (C/C) composites, they are modified by hafnium boride (HfB2) using a two-step process of in situ reaction and thermal gradient chemical vapor infiltration. X-ray diffraction is used to monitor the composition of the samples. Scanning electron microscope images show that the carbon fibers are uniformly coated by HfB2 particles. The oxidation onset temperature of carbon fibers is greatly increased from 300 to 700 °C after HfB2 coating. After modification with HfB2, the linear and mass ablation rates of the C/C composites are decreased by 51.80% and 24.32%. During oxidation and ablation, the interface between carbon matrix and fiber is effectively protected by HfB2 due to the reaction of HfB2 with the oxygen, and the resultant hafnium oxide may form the liquid film to resist the oxygen at high temperature.  相似文献   

17.
To improve the ablation resistance of carbon/carbon composites at the temperature above 2000 K, a ZrB2-SiC-ZrC ultra-high temperature ceramic coating was prepared by combination of supersonic atmosphere plasma spray (SAPS) and reaction melt infiltration. The micro-holes in ZrB2-Si-ZrC coating prepared by SAPS were effectively filled and the compactness and interface compatibility between the coating and C/C composites was improved through the reaction melt infiltration process. The ultra-high temperature ceramic coating exhibited good ablation resistance under oxyacetylene torch ablation above 2000 K. After ablation for 120 s, the mass and linear ablation rates of the ZrB2-SiC-ZrC coated C/C samples were only ?0.016 × 10?3 g/s and 1.30 µm/s, respectively. Good ablation resistance of the ultra-high temperature ceramic coating is mainly attributed to the dense coating structure and the improvement of interface compatibility between the coating and C/C composites.  相似文献   

18.
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C.  相似文献   

19.
The effects of SiC coating and heat treatment on the emissivity were investigated for 2D C/SiC composites prepared by CVI in the 6–16 μm range. SiC coating had an obvious effect on the spectral emissivity of the composites but caused just 5% difference in the total emissivity. A radiation transport model was applied to explain those changes caused by SiC coating. Heat treatment affected the thermal radiation properties of the composites through the microstructure evolution. Base on the complementary analytical techniques, the changes in the emissivity were attributed to a good graphitization degree of carbon phases, large β-SiC grain sizes and high α-SiC content resulting in high emissivity.  相似文献   

20.
《Ceramics International》2016,42(13):14518-14525
To improve the oxidation resistance of carbon/carbon (C/C) composites, a dense HfC nanowire-toughened Si-Mo-Cr/SiC multilayer coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, thermal shock and isothermal oxidation resistance of the coating were investigated. HfC nanowires could improve the toughness of the coating and suppress the coating cracking. After incorporating HfC nanowires in the coating, both of the thermal shock and isothermal oxidation resistance of the coating were obviously improved. The multilayer coating with HfC nanowires could effectively protect C/C composites at 1773 K for 270 h, whose weight loss is only 0.19%. The good oxidation resistance is mainly attributed to the formation of a compound glass layer containing SiO2 and Cr2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号