首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The field-controlled phase transition is a promising concept for the design of novel multiferroic materials. Rare-earth samarium-modified bismuth ferrite (Bi1−xSmxFeO3) possesses a morphotropic phase boundary (MPB) that has similar free energies between the polar and nonpolar phases, making it an exceptional candidate. In this study, we investigated the electric field cycling-dependent behavior of ferroelectricity in Bi1−xSmxFeO3 ceramics near MPB. During electric field cycling, a significantly enhanced remanent polarization was observed. Cycled Bi0.86Sm0.14FeO3 and Bi0.84Sm0.16FeO3 exhibited enhanced ferroelectric (remanent polarization >30 μC/cm2) and magnetic (remanent magnetization >0.20 emu/g) properties at room temperature. Through a systematic study of dynamic hysteresis measurements and a structural analysis, these results were attributed to a field cycling-induced nonpolar-to-polar phase transition. In situ high temperature measurements showed a previously unreported sharp anomaly of the piezoelectric coefficient (d33) near the magnetic transition point (TN). These results indicated a strong magnetoelectric coupling in rare earth-modified bismuth ferrite materials, suggesting the possibility of magnetically modulated piezoelectricity.  相似文献   

2.
The polycrystalline samples of multiferroic Bi1−xDyxFeO3 (x = 0, 0.1, and 0.2) were prepared by a modified solid state reaction method and characterized by X-ray diffraction, scanning electron microscopy, differential thermal analysis, dielectric and magnetic measurements. It was shown that the introduction of the Dy3+ ions stabilizes the perovskite structure and improves phase purity. The coexistence of the rhombohedral and orthorhombic phases was found to exist within the investigated concentration range 0.1  x  0.2. The changes and anomalies observed in dielectric response over a wide frequency range were correlated with the structural evolution and the development in microstructure. The SQUID measurements of the field-dependent magnetization at different temperatures demonstrated Dy doping to be a very effective method for inducing a weakly ferromagnetic state in the ferroelectric R3c phase of BiFeO3 in the absence of an external magnetic field.  相似文献   

3.
Polycrystalline Bi1?xErxFeO3 ceramics were synthesized by the solid state reaction method followed by rapid liquid phase sintering. The effects of Er substitution on the structure, morphology and electrical properties of the BiFeO3 multiferroic ceramics were investigated. X-ray diffraction and Raman studies reveal that the structure of BiFeO3 is changed from rhombohedral to orthorhombic in the Er concentration range of 0.10–0.15, and the impurity phases decrease both due to Er substitution. The X-ray photoelectron spectroscopy shows that Fe2+ could be suppressed by Er substitution. The SEM investigations suggest that the Er substitution could significantly reduce the grain sizes and increase the density of the samples. The leakage current is found to be decreased with increasing Er concentration. The dielectric and ferroelectric measurements show that dielectric constant, dielectric loss and ferroelectric properties are strongly dependent on the Er concentration. Er substitution can significantly improve the dielectric constant and remnant polarization, and decrease the dielectric loss by reducing the leakage current.  相似文献   

4.
《Ceramics International》2016,42(13):14805-14812
In this communication, we present the results on Bi1−xLaxFe1−yNiyO3 (x=0.0, 0.1; y=0.0, 0.05) samples processed by solid-state reaction route in order to study crystalline and electronic structure, dielectric and ferroelectric properties. The best refinement was achieved by choosing rhombohedral structure (R3c) for BiFeO3 and Bi0.9La0.1FeO3 samples. Whereas, the XRD pattern of BiFe0.95Ni0.05O3 and Bi0.9La0.1Fe0.95Ni0.05O3 samples were refined by choosing rhombohedral (R3c) and cubic (I23) structure. Raman scattering measurement infers nine Raman active phonon modes for all the as prepared samples. The substitution of Ni ion at Fe-site in BiFeO3 essentially changes the modes position i.e. all the modes are observed to shift to lower wave number. Dielectric constant (ε′) and dielectric loss (tan δ) as a function of frequency have been investigated and they decreases with increasing frequency of the applied alternating field and become constant at high frequencies. This feature is a characteristic of Maxwell Wagner type of interfacial polarization. The remnant polarization (Pr) for Bi0.9La0.1FeO3, BiFe0.95Ni0.05O3, and Bi0.9La0.1Fe0.95Ni0.05O3 are 0.08, 0.11, 0.69 μC/cm2, respectively and the value of coercive field for Bi0.9La0.1FeO3, BiFe0.95Ni0.05O3, and Bi0.9La0.1Fe0.95Ni0.05O3 are 0.53, 0.67, 0.68 kV/cm, respectively. X-ray absorption spectroscopy (XAS) experiments at Fe L2,3 and O K-edges are performed to investigate the electronic structure of well-characterized Bi1−xLaxFe1−yNiyO3 (x=0.0, 0.1; y=0.0, 0.05) samples. The presence of reasonable ferroelectric polarization at room temperature in Bi0.9La0.1Fe0.95Ni0.05O3 ceramics makes it suitable for technological applications.  相似文献   

5.
《Ceramics International》2016,42(16):18692-18699
Bi1−xPrxFe0.97Mn0.03O3 (x=0.00, 0.05, 0.10, 0.15, 0.20) thin films were deposited on FTO/glass substrate using chemical solution deposition. The influences of Pr doping on the crystalline structure and multiferroic properties were investigated. In the X-ray diffraction and Raman spectra results, the crystal structures of Bi1−xPrxFe0.97Mn0.03O3 films revealed a gradual transformation from the trigonal structure to the tetragonal structure. The leakage current densities of Bi1−xPrxFe0.97Mn0.03O3 films are one order of magnitude lower than that of BiFeO3. Compared with unsaturated polarization-electric field hysteresis loop of BiFeO3 film, the Pr and Mn co-doped BFO films have significantly improved ferroelectric properties. The improved remnant polarization (Pr=91.3 µC/cm2) and the positive switching current (I=0.028 A) have been observed in Bi0.85Pr0.15Fe0.97Mn0.03O3 film. The improved electrical properties are attributed to the structure transformation, increasing grain boundaries, low oxygen vacancies ratio and increasing Fe3+ concentration. In addition, the saturation magnetization of Bi0.85Pr0.15Fe0.97Mn0.03O3 film is 1.81 emu/cm3, which is approximately three times higher than pure BiFeO3 (Ms=0.67 emu/cm3).  相似文献   

6.
Multiferroics having composition Bi0.80Nd0.20-xBaxFeO3 were prepared to investigate the effect of doping on crystal structure, magnetic, and dielectric properties. The Rietveld refinement deduces the formation of mixed structural symmetry. With larger content of Nd, crystal structure consisting of major rhombohedral R3c and minor orthorhombic Pnma has been accomplished. The fraction of rhombohedral phase has been found to increase with doping of Ba up to x = 0.10. At composition x = 0.15, the orthorhombic phase Pnma disappears, and there is evolution of triclinic phase P1 in place of it. The mixed structure now accomplished contains ≈61% rhombohedral R3c and rest 39% triclinic P1. In solely Ba-doped sample (ie, at x = 0.20), the fraction of rhombohedral R3c phase again rises and attains ≈92% fraction of the structure along with rest triclinic P1 phase. The M-H loops depict enormous enhancement in magnetic properties with increasing doping of Ba. Dielectric constant (ε′) and dielectric loss (tan δ) both were found to increase with doping of Ba. The anomalies present in the dielectric constant and dielectric loss with temperature may be regarded to the hopping conduction of e between Fe3+ and Fe2+ and their interaction with oxygen vacancies.  相似文献   

7.
Lanthanum La-substituted multiferroic Bi1−xLaxFeO3 ceramics with x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 have been prepared by solution combustion method. The effect of La substitution for the dispersion studies on dielectric and ferroelectric properties of Bi1−xLaxFeO3 samples have been studied by performing x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), density, dc resistivity and dielectric measurements as well as characterizing the polarization-field hysteresis loop. The results of prepared samples are compared with those of bismuth ferrite (BiFeO3). In the measuring frequency of 10 KHz to 1 MHz, the dielectric constants and dielectric losses for samples x = 0.20, 0.25 are almost stable and exhibited lowest dielectric loss close to 0.1. The resistivity of Bi1−xLaxFeO3 samples reaches a maximum value of 109 ohm-cm, which is about three times higher than that for pure BiFeO3. The results also show that stabilization of crystal structure and nonuniformity in spin cycloid structure by La substitution enhances the resistivity, dielectric and ferroelectric properties. Furthermore, the substitution of rare earth La for Bi helps to eliminate the impurity phase in BiFeO3 ceramic.  相似文献   

8.
《Ceramics International》2015,41(7):8511-8519
Crystalline solid solution of Bi1−xPrxFeO3 (x=0.05, 0.1, and 0.15) ceramics has been successfully synthesized by a low temperature assisted co-precipitation method. Rietveld-refinement of the X-ray diffraction data reveals rhombohedral structure for Bi1−xPrxFeO3 (x=0.05, 0.10) and triclinic for Bi1−xPrxFeO3 (x=0.15). The crystallite sizes of the Bi1−xPrxFeO3 (x=0.05, 0.1 and 0.15) are found to be approximately 33, 27 and 22 nm respectively calculated using Debye–Scherrer equation. The SEM images of Bi1−xPrxFeO3 (x=0.05, 0.10 and 0.15) ceramics show grains with almost spherical morphology. 4A1 and 7E Raman modes have been observed in the range 100–650 cm−1 and two phonon modes centered around 1150–1450 cm−1 have also been observed corresponding to 2A4 (LO), 2E8 (TO) and 2E9 (TO) modes of Bi1−xPrxFeO3 (x=0.05, 0.1 and 0.15). The changes in Raman modes such as prominent frequency shift, line broadening and intensity have been noticed with the increase of Pr concentration in BiFeO3 (BFO) suggesting a structural transformation as revealed by the Rietveld refinement. An anomaly in the temperature dependent dielectric studies has been noticed in all the samples at the vicinity of Neel temperature (TN) indicating a magnetic ordering and an increase in magnetization with increase of Pr concentration is noticed from the room temperature magnetic studies. Further, the leakage current density is found to be reduced with increasing Pr concentration.  相似文献   

9.
In ferroelectric materials high electric field-induced strain (EFIS) with good thermal stability is of much interest from both fundamental research and potential applications. Here we propose a strategy to achieve high thermally stable EFIS based on electrostrictive effect and thermal stability of polarization. According to this strategy, we synthesized (1−x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 (BNT-xBCZT) ferroelectric ceramics in order to tailor the thermal stability of dielectric permittivity, polarization and EFIS. A dielectric platform with a wide temperature region is induced by increasing x from 0.24 to 0.36 gradually. From 30 °C to 150 °C, a variation of 20% polarization results in a change of 36% EFIS, suggesting a good thermal stability as expect. Temperature-insensitive electrostrictive coefficient Q33 ranges from 0.0264 m4/C2 to 0.0314 m4/C2. These results not only prove the effectiveness of this strategy, but also suggest that this strategy can be applied to other ferroelectric materials to improve the thermal stability.  相似文献   

10.
《Ceramics International》2015,41(8):9403-9410
The polycrystalline Nd-modified bismuth ferrite BiFeO3 (Bi1−xNdxFeO3 (BNFO) (x=0, 0.05, 0.15, and 0.25)) were prepared in a single-phase using a standard and cost effective solid-state reaction method. In order to check the quality and formation of the compounds x-rays diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDAX) techniques were used. Preliminary structural analysis indicates that the crystal structure of BNFO is rhombohedra for its low content of Nd (x=0, 0.05, 0.15) whereas for higher content (x=0.25) it is tetragonal. The dielectric and ferroelectric properties of BiFeO3 (BFO) were dramatically enhanced on the above Nd-substitutions. Study of the frequency dependence of ac conductivity suggests that the materials obey Jonscher׳s universal power law. An increase in Nd-content in BNFO results in the enhancement of spontaneous magnetization of BFO because of the collapse of spin cycloid structure.  相似文献   

11.
《Ceramics International》2017,43(15):11815-11819
BiFeO3 (BFO) multiferroic nanoparticles have attracted increasing attention owing to the coexistence of ferroelectric and ferromagnetic properties. In this work, Bi1−xMgxFeO3 (x = 0.05, 0.1, 0.15) multiferroic nanoparticles were synthesized by the sol-gel method. The electromagnetic properties and microwave absorption performance in the temperature range of 323–723 K at X-band were investigated. The qualified bandwidth (absorption intensity < −10 dB) of the Mg-doped BFO materials covers the whole X-band at 673 K, suggesting promising candidates as high-temperature electromagnetic absorbers.  相似文献   

12.
《Ceramics International》2016,42(3):4176-4184
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0≤y≤0.15) in the perovskite structured LaxGdyBi1−(x+y)FeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of ‘La’ content (x). The magnitude of dielectric constant (εr) increases progressively by increasing the ‘La’ content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1−(x+y)FeO3 exhibits highest remanent magnetization (Mr) of 0.18 emu/g and coercive magnetic field (HC) of ~1 T in the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBi1−(x+y)FeO3 and the role of doping elements, La3+, Gd3+ has been discussed.  相似文献   

13.
Samples in the system Bi1−xYbxFeO3 (0.02  ×  0.07) have for the first time been prepared by mechanical activation followed by sintering. XRD and DSC measurements show that the solubility limit of ytterbium in the R3c Bi1−xYbxFeO3 system is reached at x∼0.03. Higher ytterbium contents lead to a two-phase mixture of a main R3c phase of approximate composition Bi0.97Yb0.03FeO3 and ytterbium enriched secondary phases that cannot be readily indexed or quantified due to their small amount. DSC and temperature-dependent XRD showed that while the magnetic ordering temperature, TN, was unaffected by Yb substitution, the ferroelectric ordering, TC, declined. Temperature-dependent XRD patterns show that all samples exhibit rhombohedral R3c to orthorrhombic Pnma phase transitions. Diffuse reflectance spectroscopy suggests the potential use of the samples in photocatalytic applications due to their low band gap energy. Impedance spectroscopy and magnetic measurements show that samples are electrically homogenous and highly insulating, exhibiting antiferromagnetic behaviour at room temperature.  相似文献   

14.
《Ceramics International》2015,41(7):8417-8424
Raman spectroscopy, X-ray diffraction (XRD), magnetization hysteresis loop, synchrotron X-ray absorption spectroscopy, and photovoltaic effects have been measured in (Bi1−xSrx)FeO3−δ (BFO100xSr) ceramics for x=0.0, 0.05, 0.10, and 0.15. Raman spectra and XRD reveal a rhombohedral R3c structure in all compounds. A-site Sr2+ doping increases fluctuations in cation-site occupancy and causes broadening in Raman modes. BFO15Sr exhibits a strong ferromagnetic feature due to reduction of FeOFe bond angle evidenced by the extended synchrotron X-ray absorption fine structure. The heterostructure of indium tin oxide (ITO) film/(Bi1−xSrx)FeO3−δ ceramic/Au film exhibit clear photovoltaic (PV) responses under blue illumination of λ=405 nm. The maximal power-conversion efficiency and external quantum efficiency in ITO/BFO5Sr/Au are about 0.004% and 0.2%, respectively. A model based on optically excited charges in the depletion region between ITO and (Bi1−xSrx)FeO3−δ can well describe open-circuit voltage and short-circuit current as a function of illumination intensity.  相似文献   

15.
Sol-gel method was used to prepare the Pr3+ ions-doped (1-x)Na0.5Bi0.5TiO3-xCaTiO3 (Pr-NBT-xCTO) (x?=?0, 0.04, 0.06, 0.08, 0.1, 0.12, and 0.16) thin films on Pt/Ti/SiO2/Si and fused silicon substrates. The structure phase of thin films was evolving from rhombohedral (R3c) to orthorhombic (Pnma) with increasing CTO content. Owing to the morphotropic phase boundary (MPB), the improved ferroelectric and dielectric properties were obtained at x?=?0.06–0.1. The MPB was formed from the concomitant phase of rhombohedral (R3c) and orthorhombic (Pnma). The Pr-NBT-0.08CTO thin film showed the best ferroelectric and dielectric properties, as well as strong relaxor behavior (the diffusion factor is γ?=?1.79). In addition, all the films exhibited strong red emission as excited by UV light, and wide optical band-gap (3.44–3.47?eV), which might be influenced by grain size and structural variation. Our results indicate that Pr-NBT-xCTO thin films may have potential applications in ferroelectric-luminescence multifunctional optoelectronic devices.  相似文献   

16.
《Ceramics International》2016,42(11):12843-12852
A novel lead-free, high dielectric constant, ultra-wide temperature stable dielectric ceramic Ba1−xBixTi1−x−yZn0.75xW0.25x+yO3+y (0.22≤x≤0.30, y=0.015) was synthesized by the traditional solid-state reaction method. The phase composition, electric and dielectric properties of the Ba1−xBixTi1−x−yZn0.75xW0.25x+yO3 ceramics were investigated. The P-V-L dielectric theory was introduced. And, the chemical bond energy was calculated to track the changes in micro-structure. The relationships between chemical bond energy and the macroscopic dielectric properties(εr, dielectric stability and dielectric loss) in Ba1−xBixTi1−x−yZn0.75xW0.25x+yO3+y ceramics were discussed systematically. Owing to the inhomogeneous micro-structure and the diffusion in phase transition, Ba1−xBixTi1−x−yZn0.75xW0.25x+yO3+y ceramics showed a stable permittivity (~800±15%) over a ultra-wide temperature range (−30 to 375 °C). Moreover, dielectric loss was less than 0.02 and the insulation resistance was over 1012 Ω cm. These features suggested that the Ba1−xBixTi1−x−yZn0.75xW0.25x+yO3+y ceramic could be considered as a promising candidate material for energy storage applications in harsh environment.  相似文献   

17.
Lead-free Bi1?xSmxFe0.95Sc0.05O3 (x = 0.15–0.19) ceramics were fabricated by rapid hot press sintering, and their structure, ferroelectric and energy storage properties were comprehensively investigated. All the samples are in the mixed phases with R3c rhombohedral and Pbnm orthorhombic structures. With increasing x, the ferroelectric polarization decreases gradually, while the polarization loop becomes gradually slimed too. An high recoverable energy density (?2.21 J/cm3) and a large efficiency (?76%) with good thermal stability (20 °C–120 °C) are obtained under electric field (230 kV/cm) for the optimized sample x = 0.17. Moreover, transmission electron microscopy and piezo-response force microscopy measurements reveal that the presence of two-phase coexistence favors the formation of polar nano-regions, leading to the linear-towards polarization behaviors and the enhanced dielectric breakdown field, which is responsible for the superior energy storage performance of Bi1?xSmxFe0.95Sc0.05O3 ceramics. These results indicate a significant step to tailor lead-free BiFeO3-based ceramics towards high dielectric energy storage applications.  相似文献   

18.
《Ceramics International》2020,46(5):6141-6145
The single phase Bi0.95Sm0.05Fe1-xNbxO3 (0 ≤ x ≤ 0.1) nanoparticles were synthesized by the sol-gel route, and the effect of Nb substitution on their magnetic, ferroelectric and photocatalytic properties were studied. X-ray diffractometry confirms a phase transformation from rhombohedral to orthorhombic with an increase in Nb substitution. The grain size decreases significantly, and the morphology of grains becomes homogeneous with the increase of Nb concentration. The maximum remnant magnetization (0.014 emu/g), coercivity (565 Oe) and polarization (0.592 μC/cm2) are observed in Bi0.95Sm0.05Fe0.9Nb0.1O3. It has been observed that the energy band gap has been slightly reduced from 2.14 to 2.03 eV with Nb substitution, indicating an improvement of photocatalytic activity. The methylene blue degradation is used to represent the photocatalytic ability of Bi0.95Sm0.05Fe1-xNbxO3 nanoparticles. The highest degradation efficiency (~74%) of methylene blue is obtained in Bi0.95Sm0.05Fe0.93Nb0.07O3, which is much higher than that of Bi0.95Sm0.05FeO3 (~51%) and can be attributed to the optimum particle size and the smallest energy band gap.  相似文献   

19.
《Ceramics International》2017,43(15):12095-12101
Samples of Bi1−xLaxFeO3 with x = 0.1, 0.3, 0.5, and 0.7 have been synthesized by two stage solid state reaction method. Structural characterization was performed using powder x-ray diffraction at room temperature. The crystal structure of perovskite phases are further characterized via Rietveld analysis which revealed a structural transition from R3c symmetry of the parent phase of BiFeO3 to orthorhombic Pnma symmetry of LaFeO3. However the intermediate samples with x = 0.3 and 0.5 are bi – phasic (i.e. a combination of rhombohedral R3c and orthorhombic Pbam phases co-exist). Rietveld Refinement presents a good agreement between measured and simulated patterns. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the lone pair of Bi3+ at A- site. M-H hysteresis loops are recorded at room temperature up to a field of 15 kOe. The G-type antiferromagnetic spin structure and the magnetic moment are very sensitive to increasing La concentration at A-site. La substitution transformed antiferromagnetic BiFeO3 into ferromagnetic which is closely related to the structural phase transition and modification of antiparallel spin structure. Dielectric constant (ε′) and dissipation factor (tan δ) measured in frequency range 1 kHz to 5 MHz showed dispersion behaviour at low frequencies.  相似文献   

20.
In the process of exploring ferroelectric semiconductors, a new system of (1−x) KNbO3xSrFeO3−δ (x = 0.00-0.20) was successfully synthesized via solid-state reaction. The crystal structures, ferroelectric, dielectric, optical, and electrical properties were systematically characterized. The orthorhombic phase with Amm2 space group is detected in all the ceramics. In addition, the orthorhombic and tetragonal phases coexist in 0.80KNbO3-0.20SrFeO3-δ ceramic. The decrease in oxygen octahedron distortion induces a weak ferroelectric polarization. The existence of long-range ferroelectric polarization order in all the ceramics is verified and the bandgap of the ceramics can be tuned to ~2.18 eV. The improved short-circuit photocurrent density (Jsc) and open-circuit voltage (Voc) of the poled 0.95KNbO3-0.05SrFeO3−δ ceramic at 30 kV/cm are ~6.90 nA/cm2 and 0.04 V, respectively. The activation energies for electrical conductivity of the grains and grain boundaries from 0.90KN–0.10SF ceramic are 0.67 and 0.77 eV, respectively, which indicate the doubly ionized oxygen vacancies. This work provides a new way to tune the optical bandgap/ferroelectric properties of KNbO3-based ceramics for potential application in ferroelectric photovoltaic and energy fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号