首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
The SiC coatings were fabricated by the pyrolysis of polycarbosilane (PCS)/aluminum, in which PCS acts as precermaic precursor of SiC and aluminum (Al) powder acts as an active filler to both compensate the volume shrinkage of SiC coatings during pyrolysis and enhance the adhesion of SiC coatings with Fecralloy substrate. SiC coatings as thick as ~35 μm without cracking can be fabricated through our approach. Microstructural analysis revealed that the SiC coatings were composed of α-Al2O3 and β-SiC. Hardness and modulus of the SiC coatings as measured by nano-indentation were 12.2 ± 4.0 and 153.7 ± 47.0 GPa, respectively.  相似文献   

2.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

3.
Thin films of polycarbosilane were deposited on Si and SiO2 substrates. Instead of conventional oven annealing (high temperatures, inert atmosphere), laser pyrolysis was used to achieve the polymer-to-ceramic conversion. In some conditions, especially when laser radiation absorption was enhanced by depositing a carbon layer on the surface of as-deposited films or by embedding graphite particles, this processing method yielded SiC ceramic coatings, without damaging the substrate. Processing in air or low vacuum did not result in oxidized coatings, contrary to what happens for oven pyrolysis. Laser-converted films were similar to oven-heated films processed at 1000° to 1200°C.  相似文献   

4.
This paper studies the effect of pyrolysis temperature on the semiconductor-conductor transition of pristine polymer-derived ceramic silicon carbide (PDC SiC). A comprehensive study of microstructural evolution and conduction mechanism of PDC SiC pyrolyzed at the temperature range of 1200°C-1800°C is presented. At relatively lower pyrolysis temperatures (1200°C-1600°C), the carbon phase goes through a microstructural evolution from amorphous carbon to nanocrystalline carbon. The PDC SiC samples behave as a semiconductor and the electron transport is governed by the band tail hopping (BTH) mechanism in low pyrolysis temperature (1300°C); by a mixed mechanism driven by band tail hopping and tunneling at intermediate temperature (1500°C). At higher pyrolysis temperatures (1700°C-1800°C), a percolative network of continuous turbostratic carbon is formed up along the grain boundary of the crystallized SiC. The samples demonstrate metal-like conductive response and their resistivity increases monotonically with the increasing measuring temperature.  相似文献   

5.
In the present work, a high surface area SiC(O)-based ceramic powder was synthesized upon thermal transformation of a polymer-derived macromolecular precursor, which was obtained by the chemical modification of a allylhyldrido polycarbosilane with poly(ethylene glycol) methaacrylate under argon environment. The pyrolysis of developed precursor led to the formation of amorphous and high surface area SiC(O)-based ceramic powder with in situ generated micro/meso-porosity. The specific surface area of the obtained powders depends on the processing temperature. It decreases from 363 to 122 m2/g as the pyrolysis temperature increases from 600 to 1200°C, respectively. Furthermore the promising samples were fabricated using pressing technique, which led to crack-free SiC(O) monoliths on subsquent heat treatment. The present study also emphasizes the potential of produced SiC(O) ceramic powder to support NiO catalyst. The impregnation method were used to produce high surface area NiO@SiC(O) ceramic powder (NiO as a catalyst; SiC(O) as a catalyst support) for further catalytic applications. Interestingly, the distribution of the NiO was shown to strongly depend on the oxygen content present in the SiC(O) matrix. Thus, larger oxygen contents induce homogeneously distributed flower-like NiO catalyst onto SiC(O).  相似文献   

6.
The processing and reaction mechanism of metallic aluminum (Al) powder as an active filler that controls polycarbosilane (PCS) precursor pyrolysis are investigated. Since Al can react with N2 to produce aluminum nitride (AlN), the linear shrinkage upon pyrolysis decreases and the ceramic yield of PCS increases. The linear shrinkage is zero when the volume ratio between Al and PCS, νAl/PCS, is about 56%. Aluminum also enhances the three-point bending strength of the ceramics with a flexural strength of 212 MPa when νAl/PCS is 60%. The relationship among pyrolysis temperature, T p, linear shrinkage and flexural strength of the derived ceramics has been investigated. The results showed that, for the Al-containing PCS-derived ceramics, a linear expansion occurred as the flexural strength was enhanced when T p increased from 400 to 1000°C. The reaction mechanism of Al-controlled PCS pyrolysis was investigated by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and elemental line-scanning electron microscopy (ELSEM). The results showed that the SiC powder took on the role of a catalyst, which decreased the nitridation temperature of aluminum and increased the conversion yield from Al to AlN. An erratum to this article can be found at  相似文献   

7.
Carbon-rich SiC powders with high dielectric loss were prepared via pyrolysis of polycarbosilane (PCS). The effects of pyrolysis temperature on microstructures, dielectric response and microwave absorption properties in X-band (8.2–12.4 GHz) of PCS-derived SiC powders were investigated. The PCS-derived SiC powders are mainly composed of SiC nanocrystal, turbostratic carbon and amorphous phase (SiC and/or C). The size of SiC nanocrystals and the graphitization degree of carbon both increase with the elevation of pyrolysis temperature. Furthermore, the residual carbon is transformed from amorphous into turbostratic structure with a phenomenon of regional enrichment. Moreover, the relative complex permittivity increases notably with the higher pyrolysis temperature. Meanwhile, the dielectric loss tangent increases from 0.19 to 0.57, while the microwave impedance decreases from 73.20 to 53.58. The optimal reflection loss of ?35 dB for PCS-derived SiC powders is obtained when the pyrolysis temperature is 1500 °C, which exhibits a great application prospect in microwave absorbing materials.  相似文献   

8.
Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin‐coating method. Polyimides, which are high‐thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic–oleophobic properties. After coating, Al surface was subjected to Taber‐abrasion, adhesion, corrosion, and thermal tests. The effects of the particle size of ceramic powders, organic matrix, and heat on the coating material were investigated. Coating material was characterized by FTIR spectrophotometer. Surface properties and thermal resistance of the coating materials were investigated by SEM and TGA analyses. After thermal curing, contact angles of these coatings with H2O and n‐hexadecane were measured. It was observed that coatings like ceramic particles are more resistant against scratch and abrasion than the other coatings. Also, they are harder than coatings, which do not include ceramic particles. It was seen that coatings, containing Fluorolink D10H, have high‐contact angles with water and n‐hexadecane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2386–2392, 2006  相似文献   

9.
Composite coatings consisting of flake graphite and SiO2 fillers in a hyperbranched polycarbosilane (HBPCS) matrix were designed and prepared to meet the requirements of laser protection. The laser ablation behavior of the composite coatings were investigated. Control experiments were designed to study the performance of SiO2 during laser irradiation. The results show that the introduction of SiO2 changes the anti-laser protective mechanism and can improve the anti-laser property of the coating. High power laser irradiation results in pyrolysis of HBPCS and the formation of SiC particles. Chemical reactions between SiO2, graphite, and SiC play an important role in consuming energy, and provide an excellent cooling effect to the substrate, leading to decreased temperature. SiC particles formed on the surface of the laser ablation area act as a shield to prevent the laser from irradiating deeper layers of the coating. Due to the cooling effect and thermal stability of SiC, the proposed coating shows a good anti-laser property.  相似文献   

10.
The ceramic precursor for ZrC/SiC was prepared via solution‐based processing using polyzirconoxane, polycarbosilane, and divinylbenzene. The precursor could be transformed into ZrC/SiC ceramic powders at relative low temperature (1500°C). The cross‐linking process of precursor was studied by FT–IR. The conversion from precursor into ceramic was investigated by TGA, XRD. The ceramic compositions and microstructures were identified by element analysis, Raman spectra, SEM, and corresponding EDS. The results indicated that the ceramic samples remained amorphous below 1000°C and t–ZrO2 initially generated at 1200°C. Further heating to 1400°C led to the formation of ZrC and SiC with the phase transformation of ZrO2 and almost pure ZrC/SiC could be obtained upon heat‐treatment at 1500°C. During heat treatments, the ceramic sample changed from compact to porous due to carbothermal reduction. The ceramic powders with particle size of 100 nm~400 nm consisted of high crystalline degree ZrC and SiC phases, and Zr, Si, C were well distributed at the different sites in ceramic powders. The free carbon content was lowered to 1.60 wt% in final ZrC/SiC composite ceramics.  相似文献   

11.
This paper presents the pressureless preparation of dense and crack-free near stoichiometric SiC monoliths via cross-linking and pyrolysis of a polycarbosilane, followed by polymer-infiltration-pyrolysis cycles. The composition and the porosity of the samples strongly depend on the processing temperature. Thus, at 1050–1100 °C, the SiC monoliths are X-ray amorphous and exhibit low amounts of oxygen and excess carbon; their porosity was rather high (>10%). Higher processing temperatures induced the crystallization of β-SiC. The removal of oxygen and excess carbon due to CO release allowed for obtaining near-stoichiometric compositions at 1700 °C. However, the residual porosity of the samples increased. The use of the PIP technique led already after six cycles to dense monoliths (residual porosity ca. 0.5%).The present study emphasizes the potential of the polymer processing technique for the fabrication of near stoichiometric and dense SiC monoliths, which might be used for structural applications in harsh conditions.  相似文献   

12.
Tape casting has been applied to produce porous hybrid and SiOC ceramic tapes using ceramic precursors and commercially available polysiloxanes as polymeric binders. SiC particles of two different mean sizes (4.5 or 6.5?μm) were used as inert fillers to prevent shrinkage and increase mechanical stability. Macroporosity was adjusted by varying the azodicarbonamide (ADA) content from 0 to 30?wt.%. Decomposition of the polysiloxanes at 600?°C resulted in the generation of micropores with high specific surface area (187–267 m2?g?1) and a predominant hydrophobic behavior. At 1000?°C mainly meso/macroporosity were observed (SSA: 32–162 m2?g?1) accompanied by increased hydrophilicity. The influence of ADA content, SiC size, and pyrolysis temperature on open porosity (2.5–37%), average pore size (<0.01–1.76?μm), surface characteristics, and flexural strength (10.5–121?MPa) were investigated. The porous tapes with different surface characteristics and controlled structure are highly promising for applications involving membrane processes, particularly microfiltration systems (0.1–10?μm).  相似文献   

13.
Carbon-rich SiC fibers were prepared in a cost-effective way using in-situ chemical vapor growth upon pyrolysis of polyzirconosilane at 1200 °C under nitrogen atmosphere, with 0.5-1 μm in diameter and a few milimeters in length and a yield of about 30 %. The empirical formula of the fibers is Si1C6.6O0.1, and both silicon and carbon atoms inside the fibers are found to be uniformly distributed, and the free carbon atoms show a turbostratic state. The carbon-rich SiC fibers show ideal thermo-oxidation resistance at 1200 °C in air. Chemical vapor growth of ceramic fibers upon preceramic pyrolysis can be used to prepare high performance ceramic fibers on a large scale cost- effectively.  相似文献   

14.
《Ceramics International》2017,43(14):11006-11014
SiC nanowires were successfully synthesized without catalyst by pyrolysis of silicon-containing pitch-derived carbon materials in a closed graphite crucible. These silicon-containing carbon materials were obtained by homogenization and co-carbonization of a hybrid precursor consisting of the toluene soluble fraction of coal tar pitch with polycarbosilane (PCS). The composition, morphology and structure of the nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The influence of pyrolysis temperature on the growth of the nanowires was investigated by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetry coupled with mass spectroscopy (TG-MS) analysis. The results indicate that the growth of the SiC nanowires starts at around 1200 °C. As the pyrolysis temperature increases to 1300–1500 °C, a large quantity of nanowires are formed on the top surface of the pitch-derived carbon substrate. In addition, increasing the pyrolysis temperature leads to an increase in the average diameter and a change in the typical morphology produced. The synthesized SiC nanowires have single-crystalline structure and are grown along the [111] direction with numerous stacking faults and twins. The vapor-solid (VS) mechanism may be responsible for the growth process of the SiC nanowires.  相似文献   

15.
《Ceramics International》2020,46(9):13066-13072
Stereolithography of ceramic precursors is a valuable additive manufacturing technology for complex ceramic parts. In this study, a new SiC ceramic precursor—liquid hyperbranched polycarbosilane (LHBPCS) grafting acrylate group was synthesized by chlorinating some Si–H groups of LHBPCS with Cl2 followed by reacting with hydroxyethyl acrylate. The reaction processes and structures of intermediate reactant and target product were confirmed by FT-IR and 1H NMR. According to photolithography experiment and hardness test under UV light, the synthesized LHBPCS had high photo-curing activity. Thermogravimetric analysis indicated it also possessed high ceramic yield (the ceramic yield at 1000 °C was 74.4%). After shaping with stereolithography, defect-free green bodies could be got. When heated to 1000 °C, the transparent yellow green bodies transformed into black SiC rich ceramic parts and 18.3–25.1% linear shrinkage associated with the precursor-to-ceramic conversion was observed. Because the shrinkage in the pyrolysis stage was nearly isotropic and the shrinkage was lower than other reported data, no obvious deformation or crack was found in the pyrolyzed parts.  相似文献   

16.
The contact angles of two different systems, molten silicon and a eutectic Si-8 at. pct Zr alloy and their evolution over timeon vitreous carbon and polycrystalline silicon carbide (SiC) substrates were investigated at 1500°C under vacuum, as well as in argon using the sessile drop technique. The contact angle and microstructure of the liquid droplet/solid substrate interface were studied to understand fundamental features of reactive wetting as it pertains to the infiltration process of silicon and silicon alloys into carbon or C/SiC preforms. Both pure Si and theeutectic alloy showed good wettability onvitreous carbon and SiC characterized by equilibrium contact angles between 29° and 39°. Theeutectic alloy showed a higher initial contact angle and slower spreading as compared to that of pure Si. On vitreous carbon bothsilicon and the eutecticalloy formed SiC at the interface, while no reaction was observed on the SiC substrates.  相似文献   

17.
《Ceramics International》2017,43(10):7387-7392
In the present study, a novel liquid polycarbosilane (LPCS) with a ceramic yield as high as 83% was applied to develop 3D needle-punched Cf/SiC composites via polymer impregnation and pyrolysis process (PIP). The cross-link and ceramization processes of LPCS were studied in detail by FT-IR and TG-DSC; a compact ceramic was obtained when LPCS was firstly cured at 120 °C before pyrolysis. It was found that the LPCS-Cf/SiC composites possessed a higher density (2.13 g/cm3) than that of the PCS-Cf/SiC composites even though the PIP cycle for densification was obviously reduced, which means a higher densification efficiency. Logically, the LPCS-Cf/SiC composites exhibited superior mechanical properties. The shorter length and rougher surfaces of pulled-out fibers indicated the LPCS-Cf/SiC composites to possess a stronger bonding between matrix and PyC interphase compared with the PCS-Cf/SiC composites.  相似文献   

18.
A hybrid precursor of titanium-containing polycarbosilane is prepared by blending hyperbranched polycarbosilane (HBPCS) and tetrabutyl titanate (TBT), and then crosslinking at 160 °C, followed by pyrolyzing at high temperatures to afford SiC(Ti) ceramics. The crosslinking reaction of HBPCS–TBT hybrid precursor is investigated by FT-IR, solid state 29Si MAS NMR, and GPC. The results indicate that the crosslinking reaction takes place via condensation between the Si–H bond of HBPCS and butoxy group in TBT leading to the formation of Si–O–Ti bonds. The thermal properties and structural evolution of crosslinked hybrid precursor and the crystallization behavior and composition of final ceramics are investigated by TGA, FT-IR, Raman spectroscopy, XRD and energy dispersive elemental analysis. The ceramic yield of hybrid precursor is significantly enhanced by introduction of TBT. The ceramic yield at 1,400 °C is 83% for HBPCS–TBT-5 as measured by TGA. The Ti-content in the ceramic is controlled by varying the TBT content in the feed. The SiC(Ti) ceramic is amorphous at 900 °C. The characteristic peaks of β-SiC and TiC appear until 1,600 °C. The growth of SiC crystals is inhibited by the formation of TiC.  相似文献   

19.
《Ceramics International》2022,48(18):25840-25848
SiAlC ceramics were prepared with a new polyaluminocarbosilane (PACS-N01) which was synthesized using methylaluminoxane (MAO) and liquid hyperbranched polycarbosilane (LPCS), and had a quite high ceramic yield (around 82.7%) at 900 °C in argon after curing. The obtained SiAlC ceramics consisted of β-SiC as major building units, small amounts of α-SiC and Al-containing phases with Al–O and Al–C bonds, and stayed partially amorphous till 1600 °C. Oxidation behaviors of SiAlC ceramics and SiC ceramics prepared through the same procedure were studied in the air at 1200 °C for different times. Dense oxide scales free of pores were formed on the surface of both samples. Measurements of oxide scale thickness revealed that the oxidation followed parabolic reaction kinetics and that the oxidation rate constant was apparently smaller for SiAlC than that for SiC. Besides, –Al–O–Si– network structure could be formed in SiAlC's oxide scale, which was supposed to block the pathway of oxygen diffusion and thus lowered the oxidation rates.  相似文献   

20.
SiC porous ceramics can be prepared by introducing the polyurethane preparation method into the production process of ceramic biscuits, followed by sintering at 1300?°C for 2?h under N2 flux after the cross-linking of polycarbosilane at 220?°C for 4?h in air. The microstructures, mechanical properties and infiltrations of the SiC porous ceramics are investigated in detail. The best dispersal effect comes from the SiC slurry with xylene as the solvent and a mixture of Silok®7096 (1?wt%) and Anjeka®6041 (4?wt%) as the dispersant. The compressive strength of SiC porous ceramics with high porosity (69.53%) reaches 16.9?MPa. The heat treatment can increase infiltration, the rate of which (4.296?×?10?7 mm2) after the heat treatment at 750?°C in air is approximately two times faster than that before the heat treatment. The SiC porous ceramics fabricated in this study will have potential application in active thermal protection systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号