首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2015,41(4):5843-5851
Hot pressed monolithic ZrB2 ceramic (Z), ZrB2–20 vol% SiC composite (ZS20) and ZrB2–20 vol% SiC–10 vol% nano-graphite composite (ZS20Gn10) were investigated to determine the influence of graphite nano-flakes on the sintering process, microstructure, and mechanical properties (Vickers hardness and fracture toughness) of ZrB2–SiC composites. Hot pressing at 1850 °C for 60 min under 20 MPa resulted in a fully dense ZS20Gn10 composite (relative density: 99.6%). The results disclosed that the grain growth of ZrB2 matrix was efficiently hindered by SiC particles as well as graphite nano-flakes. The fracture toughness of ZS20Gn10 composite (7.1 MPa m1/2) was essentially improved by incorporating the reinforcements into the ZrB2 matrix, which was greater than that of Z ceramic (1.8 MPa m1/2) and ZS20 composite (3.8 MPa m1/2). The fractographical observations revealed that some graphite nano-flakes were kept in the ZS20Gn10 microstructure, besides SiC grains, which led to toughening of the composite through graphite nano-flakes pull out. Other toughening mechanisms such as crack deflection and branching as well as crack bridging, due to the thermal residual stresses in the interfaces, were also observed in the polished surface.  相似文献   

2.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

3.
《Ceramics International》2017,43(11):8411-8417
The effect of nano-sized carbon black on densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) – silicon carbide (SiC) ceramic was studied. A ZrB2-based ceramic matrix composite, reinforced with 20 vol% SiC and doped with 10 vol% nano-sized carbon black, was hot pressed at 1850 °C for 1 h under 20 MPa. For comparison, a monolithic ZrB2 ceramic and a ZrB2–20 vol% SiC composite were also fabricated by the same processing conditions. By adding 20 vol% SiC, the sintered density slightly improved to ~93%, compared to the relative density of ~90% of the monolithic one. However, adding 10 vol% nano-sized carbon black to ZrB2–20 vol% SiC composite meaningfully increased the sinterability, as a relatively fully dense sample was obtained (RD=~100%). The average grain size of sintered ZrB2 was significantly affected and controlled by adding carbon black together with SiC acting as effective grain growth inhibitors. The Vickers hardness, flexural strength and fracture toughness of SiC reinforced and carbon black doped composites were found to be remarkably higher than those of monolithic ZrB2 ceramic. Moreover, unreacted carbon black additives in the composite sample resulted in the activation of some toughening mechanisms such as crack deflections.  相似文献   

4.
《Ceramics International》2017,43(10):7454-7460
Multi-walled carbon nanotubes (MWCNTs) were used to optimize the microstructure and improve the fracture properties of hot-pressed carbon fiber-reinforced ZrB2-based ultra-high temperature ceramic composites. Microstructure analysis indicated that the introduction of MWCNTs effectively reduced the carbon fiber degradation and prevented fiber-matrix interfacial reaction during processing. Due to the presence of MWCNTs, the matrix contained fine ZrB2 grains and in-situ formed nano-sized SiC/ZrC grains. The fracture properties were evaluated using the single edge-notched beam (SENB) test. The fracture toughness and work of fracture of the Cf/ZrB2-based composite with MWCNTs were 7.0±0.4 MPa m1/2 and 379±34 J/m2, respectively, representing increases of 59% and 87% compared to those without MWCNTs. The excellent fracture properties are attributed to the moderate interfacial bonding between the fibers and matrix, which favour the toughening mechanisms, such as fiber bridging, fiber pull-out and crack deflection at interfaces.  相似文献   

5.
《Ceramics International》2017,43(9):6942-6948
The processing, microstructure, and mechanical properties of zirconium diboride-boron carbide (ZrB2-B4C) ceramics were characterized. Ceramics containing nominally 5, 10, 20, 30, and 40 vol% B4C were hot-pressed to full density at 1900 °C. The ZrB2 grain size decreased from 4 to 2 µm and B4C inclusion size increased from 3 to 5 µm for B4C additions of 5 and 40 vol% B4C, respectively. Elastic modulus decreased from 525 to 515 GPa and Vickers hardness increased from 15 to 21 GPa as the B4C content increased from 5 to 40 vol%, respectively, following trends predicted using linear rules of mixtures. Flexure strength and fracture toughness both increased with increasing B4C content. Fracture toughness increased from 4.1 MPa m½ at 5 vol% B4C to 5.3 MPa m½ at 40 vol% B4C additions. Flexure strength was 450 MPa with a 5 vol% B4C addition, increasing to 590 MPa for a 40 vol% addition. The critical flaw size was calculated to be ~30 µm for all compositions, and analysis of the fracture surfaces indicated that strength was controlled by edge flaws generated by machining induced sub-surface damage. Increasing amounts of B4C added to ZrB2 led to increasing hardness due to the higher hardness of B4C compared to ZrB2 and increased crack deflection. Additions of B4C also lead to increases in fracture toughness due to increased crack deflection and intergranular fracture.  相似文献   

6.
High-performance B4C composites toughened by TiB2-SiC agglomerates were fabricated via reactive hot pressing with B4C, TiC and Si as raw materials. The TiB2-SiC composite serves as a composite toughening phase formed in the B4C matrix through an in situ reaction; its agglomerates are composed of interlocked TiB2 and SiC, which can remarkably improve the toughness of the B4C composites. The Vickers hardness, flexural strength and fracture toughness of the B4C-TiB2-SiC composite reached 35.18 ± 0.45 GPa, 567 ± 14 MPa, and 6.38 ± 0.18 MPa m1/2 respectively. The special toughening structure of the TiB2-SiC composite introduced into B4C ceramics was evaluated for the first time in this study.  相似文献   

7.
The oxidation behavior for ZrB2–20 vol% SiC (ZS20) and ZrB2–30 vol% SiC (ZS30) ceramics at 1500 °C was evaluated by weight gain measurements and cross-sectional microstructure analysis. Based on the oxidation results, laminated ZrB2–30 vol% SiC (ZS30)/ZrB2–25 vol% SiC (ZS25)/ZrB2–30 vol% SiC (ZS30) symmetric structure with ZS30 as the outer layer were prepared. The influence of thermal residual stress and the layer thickness ratio of outer and inner layer on the mechanical properties of ZS30/ZS25/ZS30 composites were studied. It was found that higher surface compressive stress resulted in higher flexural strength. The fracture toughness of ZS30/ZS25/ZS30 laminates was found to reach to 10.73 MPa m1/2 at the layer thickness ratio of 0.5, which was almost 2 times that of ZS30 monolithic ceramics.  相似文献   

8.
《Ceramics International》2017,43(17):15047-15052
The combined effects of SiC particles and chopped carbon fibers (Cf) as well as sintering conditions on the microstructure and mechanical properties of spark plasma sintered ZrB2-based composites were investigated by Taguchi methodology. Analysis of variance was used to optimize the spark plasma sintering variables (temperature, time and pressure) and the composition (SiC/Cf ratio) in order to enhance the hardness of ZrB2–SiC–Cf composites. The sintering temperature was found as the most effective variable, with a significance of 83%, on the hardness. The hardest ZrB2-based ceramic was achievable by adding 20 vol% SiC and 10 vol% Cf after spark plasma sintering at 1850 °C for 6 min under 30 MPa. Fracture toughness improvement were related to the simultaneous presence of SiC and Cf phases as well as the in-situ formation of nano-sized interfacial ZrC particles. Crack deflection, crack branching and crack bridging were detected as the toughening mechanisms. A Vickers hardness of 14.8 GPa and an indentation fracture toughness of 6.8 MPa m1/2 were measured for the sample fabricated at optimal processing conditions.  相似文献   

9.
ZrB2–SiC composites were prepared by spark plasma sintering (SPS) at temperatures of 1800–2100 °C for 180–300 s under a pressure of 20 MPa and at higher temperatures of above 2100 °C without a holding time under 10 MPa. Densification, microstructure and mechanical properties of ZrB2–SiC composites were investigated. Fully dense ZrB2–SiC composites containing 20–60 mass% SiC with a relative density of more than 99% were obtained at 2000 and 2100 °C for 180 s. Below 2120 °C, microstructures consisted of equiaxed ZrB2 grains with a size of 2–5 μm and α-SiC grains with a size of 2–4 μm. Morphological change from equiaxed to elongated α-SiC grains was observed at higher temperatures. Vickers hardness of ZrB2–SiC composites increased with increasing sintering temperature and SiC content up to 60 mass%, and ZrB2–SiC composite containing 60 mass% SiC sintered at 2100 °C for 180 s had the highest value of 26.8 GPa. The highest fracture toughness was observed for ZrB2–SiC composites containing 50 mass% SiC independent of sintering temperatures.  相似文献   

10.
Raman spectroscopy and neutron diffraction were used to study the stresses generated in zirconium diboride–silicon carbide (ZrB2–SiC) ceramics. Dense, hot pressed samples were prepared from ZrB2 containing 30 vol% α-SiC particles. Raman patterns were acquired from the dispersed SiC particulate phase within the composite and stress values were calculated to be 810 MPa. Neutron diffraction patterns were acquired for the ZrB2–SiC composite, as well as pure ZrB2 and SiC powders during cooling from ~1800 °C to room temperature. A residual stress of 775 MPa was calculated as a function of temperature by comparing the lattice parameter values for ZrB2 and SiC within the composite to those of the individual powders. The temperature at which stresses began to accumulate on cooling was found to be ~1400 °C based on observing the deviation in lattice parameters between pure powder samples and those of the composite.  相似文献   

11.
Laminated SiC/ZrB2 ceramic was fabricated by roll-compaction and spark plasma sintering at 1600 °C. A maximum fracture toughness of 12.3 ± 0.3 MPa m1/2 was measured for the sintered SiC/ZrB2 laminated ceramic. This significant improvement in fracture toughness can be attributed to the crack deflection along the interfacial layer and the presence of residual stresses in the sample. The effect of interlayer composition on the residual stresses was discussed in detail. It is observed that the residual thermal stress could be reduced by addition of ZrB2 particles to the SiC interlayer. The bending strength can be increased to 388 ± 44 MPa with the addition of 20 vol% ZrB2 to the SiC interlayer.  相似文献   

12.
TiC-based composites toughened by submicron SiC particles with improved fracture toughness were fabricated and fracture mechanism has been investigated. It has been found that the improvement in fracture toughness of TiC–SiC composites is due to both crack paths propagating through uniformly distributed SiC particles and the fracture mode transition from intergranular type to transgranular type caused by the change of residual stresses originating from the addition of SiC particles. The optimum of fracture toughness (5.2 MPa m1/2) was achieved at 14.6 vol% SiC, whereas the toughness decreased with increasing amount of SiC beyond 30 vol%.  相似文献   

13.
Oxidation behavior of hot forged textured ZrB2–20 vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500 °C for exposure time from 0.5 to 12 h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forging pressure demonstrated better oxidation resistance. Such improvement in the oxidation resistance is primarily considered as a higher intrinsic ZrB2 atomic density on the orientated {0 0 l} planes in the textured ceramics. It is expectable that the anisotropic textured ZrB2–MoSi2 ceramics can offer better oxidation resistance when a certain surface with higher oxidation resistance is exposed to air at elevated temperature.  相似文献   

14.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

15.
ZrB2–SiC composite ceramics with varying compositions (6.4, 22.3, and 61.5 vol% ZrB2–SiC) were synthesized and spark plasma sintered (SPS) for 30 min under argon atmosphere. Ceramics showed relatively uniformly distributed phases with small spherical crystallized grains. Vickers hardness and fracture toughness of ceramics were measured, and scratch and tribological behaviors of sintered ceramic specimens were also investigated. According to experimental results, materials having different inter- and trans-granular fractures showed different wear loss, friction efficient, and tribofilm morphology. Ceramics chemically reacted with moisture while being tribotested, leading to the formation of a tribofilm on the bottom of wear track. Characteristics of silica/hydride silica revealed the formation of tribofilms with different morphologies, thereby implying that several key factors are involved in determining the efficiency of this process.  相似文献   

16.
Dense ZrB2–20 vol% SiC ceramics (ZS) were fabricated by hot pressing using self-synthesized high purity ZrB2 and commercial SiC powders as raw materials. The high temperature flexural strength of ZS and its degradation mechanisms up to 1600 °C in high purity argon were investigated. According to the fracture mode, crack origin and internal friction curve of ZS ceramics, its strength degradation above 1000 °C is considered to result from a combination of phenomena such as grain boundary softening, grain sliding and the formation of cavitations and cracks around the SiC grains on the tensile side of the specimens. The ZS material at 1600 °C remains 84% of its strength at room temperature, which is obviously higher than the values reported in literature. The benefit is mainly derived from the high purity of the ZrB2 powders.  相似文献   

17.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

18.
《Ceramics International》2016,42(4):5375-5381
The influences of adding SiC on the microstructure and densification behavior of ZrB2 and TiB2 ceramics, hot pressed at 1850 °C for 60 min under 20 MPa, were investigated. The sintered samples were characterized by SEM, EDS and XRD methods. A fully dense TiB2-based ceramic was obtained by adding 30 vol% SiC. The grain size of ZrB2 or TiB2 matrices in the final microstructures decreased with increasing SiC content. The XRD analyses, microstructural characterization as well as thermodynamical calculations proved the in-situ formation of TiC in the SiC reinforced TiB2-based composites. The interfaces between ZrB2 and SiC grains in the SiC reinforced ZrB2-based composites were free of any impurities or tertiary interfacial phases such as ZrC. This result was consistent with the X-ray diffraction pattern and thermodynamics.  相似文献   

19.
《Ceramics International》2017,43(5):4372-4378
A simple method for introducing ZrB2 using sol-gel processing into a SiBCN matrix is presented in this paper. Zirconium n-propoxide (ZNP), boric acid and furfuryl alcohol (C5H6O2) (FA) were added as the precursors of zirconia, boron oxide and carbon forming ZrB2 dispersed in a SiBCN matrix. SiBCN/ZrB2 composites with different contents of ZrB2 (5, 10, 15, and 20 wt%) were formed at 2000 °C for 5 min by spark plasma sintering (SPS). The microstructures were carefully studied. TEM analysis showed that the as formed ZrB2 grains were typically 100–500 nm in size and had uniform distribution. HRTEM revealed clean grain boundaries between ZrB2 and SiC, however, a separation of C near the SiC boundary was observed. The flexural strength, fracture toughness, Young's modulus and Vicker's hardness of composites all improved with the ZrB2 contents and SiBCN matrix containing 20 wt% of ZrB2 could reach 351±18 MPa, 4.5±0.2 MPa m1/2, 172±8 GPa and 7.2±0.2 GPa, respectively. The improvement in fracture toughness can be attributed to the tortuous crack paths due to the presence of reinforcing particles.  相似文献   

20.
Si3N4-ZrB2 ceramics were hot-pressed at 1500 °C using self-synthesized fine ZrB2 powders containing 2.0 wt% B2O3 together with MgO-Re2O3 (Re = Y, Yb) additives. Both Si3N4 and ZrB2 grains in the hot-pressed ceramics were featured with elongated and equiaxed morphology. The presence of elongated Si3N4 and ZrB2 grains led to the partial texture of the ceramics under the applied pressure. Vickers hardness and fracture toughness of Si3N4-ZrB2 ceramics with MgO-Re2O3 additives prepared at low temperature were about 19–20 GPa and 9–11 MPa m1/2, respectively, higher than the reported values of Si3N4-based ceramics prepared at high temperature (1800 °C or above) under the same test method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号