首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The 600-MHz 1H-NMR NOESY spectra on Co(II)7-reconstituted metallothionein (Co7MT), exhibiting hyperfine signals in the range 350 ppm to -50 ppm, with nuclear relaxation times of the order of a few milliseconds, have been measured and several interproton connectivities have been detected. To our knowledge, this is the largest spectral window ever reported for a two-dimensional 1H-NMR spectrum in the case of a paramagnetic metalloprotein. No scalar connectivities could be detected. The hyperfine-shifted signals belong to the cysteine-ligand protons of the Co4S11 cluster of Co7MT. Together with results from one-dimensional NOE experiments, the two-dimensional experiments allowed us to proceed with the pairwise assignment of the isotropically shifted signals of the C beta H2 groups of the metal-coordinated cysteines. With the aid of computer-graphics inspection of the four-metal-cluster domain, based on the NMR solution structure of Cd7MT, it is possible to purpose sequence-specific assignments of a few hyperfine-shifted 1H-NMR signals. In particular, a tentative assignment is given for the six signals whose shifts exhibit an antiCurie temperature dependence. The assignment relies on the theoretical model that qualitatively rationalizes the isotropic-shift pattern and its temperature dependence. Inferences on the solution structure of the Co4S11 cluster are drawn.  相似文献   

2.
A 32-base-pair model of the Holliday junction (HJ) intermediate in genetic recombination has been prepared and analyzed in-depth by 2D and 3D (1)H NMR spectroscopy. This HJ (J2P1) corresponds to a cyclic permutation of the base pairs at the junction relative to a previously studied HJ [J2; Chen, S.-M., & Chazin, W.J. (1994) Biochemistry 33, 11453-11459], designed to probe the effect of the sequence at the n - 1 position (where n is the residue directly at the branch point) on the stacking geometry. Observation of several interbase nuclear Overhauser effects (NOEs) clearly indicates a strong preference for the isomer opposite that observed for J2, confirming the dependence of stacking isomer preference on the sequence at the junction. As for other model HJs studied, a small equilibrium distribution of the alternate isomer could be identified. A sample of J2P1 was prepared with a single (15)N-labeled thymine residue at the branch point. 1D (15)n-filtered (1)H-detected experiments on this sample at low temperature give strong support for the co-existence of the two stacking isomers and provide a much more direct and accurate measure of the crossover isomer distribution. The comparative analysis of our immobile HJs and a model cruciform structure [Pikkemaat, J.A., van den Elst, H., van Boom, J.H., & Altona, C. (1994) Biochemistry 33, 14896-14907] sheds new light on the issue of the relevance of crossover isomer preference in vivo.  相似文献   

3.
Complete sequential 1H and 15N resonance assignments for the reduced Cu(I) form of the blue copper protein azurin (M(r) = 14,000, 129 residues) from Alcaligenes denitrificans have been obtained at pH 5.5 and 32 degrees C using homo- and heteronuclear two-dimensional and heteronuclear three-dimensional NMR spectroscopy. Comparison of the resonance assignments for the backbone protons with those of Pseudomonas aeruginosa azurin, which is 68% homologous in its amino acid sequence and has a very similar three-dimensional structure, showed a high similarity in chemical shift positions. After adjustment for random coil contributions the mean difference in NH chemical shifts is 0.00 ppm (root mean square width = 0.30 ppm), whereas for C alpha protons the mean difference is 0.09 ppm (root mean square width = 0.23 ppm). Characteristic NOE connectivities and 3JHN alpha values were used to determine the secondary structure of azurin in solution. Two beta-sheets, one helix, and nine tight and four helical turns were identified, and some long-range NOE contacts were found that connect the helix with the beta-sheets. The secondary structure obtained is in agreement with the structure derived from X-ray diffraction data [Baker, E. N. (1988) J. Mol. Biol. 203, 1071-1095]. Studies of the hydration of the protein in the vicinity of the copper ligand residue His117 revealed that the solvent-exposed N epsilon 2 of His117 is in slow exchange with the bulk solvent. However, no evidence was obtained for the presence of a long-lived water molecule at the position corresponding to a well-defined water molecule observed in the crystal structures of A. denitrificans and Ps. aeruginosa azurin.  相似文献   

4.
Two isozymes of ribonuclease (RNase) T1 exist in nature, i.e. Gln25 RNase T1 and Lys25 RNase T1. Gln25 RNase T1 is less stable than Lys25 RNase T1, although the enzymatic activity is not distinguishable between these two isozymes. To elucidate the effects of the replacement of Lys25 with Gln on the conformation and microenvironments of RNase T1 in detail, two-dimensional NMR spectra were measured, sequence-specific 1H NMR resonance assignments of Gln25 RNase T1 were performed, and then the determined parameters and microenvironments of Gln25 RNase T1 were compared with those of Lys25 isozyme [Hoffmann, E. and Rüterjans, H. (1988) Eur. J. Biochem. 177, 539-560]. The main chain protons were assigned for 101 out of the total of 104 amino acid residues. Secondary structure elements were identified from analysis of characteristic NOE patterns, interstrand NOE connectivities, and hydrogen-deuterium exchange rates of main chain amide protons. The results indicated that Gln25 RNase T1 contains a single alpha-helix and seven beta-strands. The secondary structure of Gln25 RNase T1 is, thus, essentially the same as that of Lys25 RNase T1. On the other hand, comparison of the conformation-dependent shifts of Gln25 RNase T1 with these of Lys25 RNase T1 showed that the replacement of Lys25 with Gln has significant effects on the C-terminal part of the alpha-helix region and the base-binding site. These results may indicate that the base-binding site is relatively flexible in the RNase T1 molecule. Among the residues of the C-terminal part of the alpha-helix region, the protons of Asp29 were most affected in terms of their chemical shifts, which may indicate that the side chain carboxylate anion of Asp29 is the counterpart of the electrostatic interaction of Lys25 in Lys25 RNase T1. The Gln25 of Gln25 RNase T1 may have little or no interaction with Asp29, and this may be the reason why Gln25 RNase T1 is less stable than the Lys25 isozyme.  相似文献   

5.
NMR study of G.A and A.A pairing in (dGCGAATAAGCG)2   总被引:2,自引:0,他引:2  
One- and two-dimensional NMR, UV absorption experiments, and molecular mechanics calculations were conducted on an oligonucleotide duplex (dGCGAATAAGCG)2 which will be referred to as the T-11-mer. This oligonucleotide forms a duplex that is primarily B-form and contains two adjacent G.A and A.A base pairs and two 3' unpaired guanosines. The adjacent mismatch base pairs have an unusual structure which includes overwinding the helix and stacking with the base from the complementary strand (A4 with A8 and G3 with A7) instead of stacking with the base which is sequential on the strand. The exchangeable and nonexchangeable proton NMR spectra of the duplex have been characterized in H2O and D2O solution at neutral and acidic pH. The duplex is stabilized upon protonation; however, no additional hydrogen bonds are formed. We have observed the amino protons of adenosines A4 and A8 and guanosine G3 as a function of temperature and pH. These amino protons are involved in hydrogen bonds with the purine N3 or N7 acting as acceptors. Through the observation of a variety of NOE signals, the structure of the G.A and A.A mismatch base pairs has been defined.  相似文献   

6.
The complete sequence-specific assignments of resonances in the 1H-NMR spectrum of huwentoxin-I from the Chinese bird spider, Selencocosmia huwena, is described. A combination of two-dimensional NMR experiments including 2D-COSY, 2D-NOESY, and 2D-TOCSY has been employed on samples of the toxin dissolved in D2O and in H2O for assignment purposes. Protons belonging to spin systems for each of the 33 amino acids were identified. The sequence-specific assignments were facilitated by the identification of d alpha N connectivities on the fingerprint regions of the COSY and NOESY spectra and were supported by the identification of dNN and d alpha N connectivities in the TOCSY and NOESY spectra. These studies provide a basis for the determination of the solution-phase conformation of this toxin.  相似文献   

7.
An N-acetyl-2-aminofluorene (AAF) modified deoxyoligonucleotide duplex, d(C1-C2-A3-C4-[AAF-G5]-C6-A7-C8-C9).d(G10-G11-T12-G13-C14-++ +G15-T16-G17-G18), was studied by one- and two-dimensional NMR spectroscopy. Eight of the nine complementary nucleotides form Watson-Crick base pairs, as shown by NOEs between the guanine imino proton and cytosine amino protons for G.C base pairs or by an NOE between the thymine imino proton and adenine H2 proton for A.T base pairs. The AAF-G5 and C14 bases show no evidence of complementary hydrogen bond formation to each other. The AAF-G5 base adopts a syn conformation, as indicated by NOEs between the G5 imino proton and the A3-H3' and A3-H2'/H2" protons and by NOEs between the fluorene-H1 proton of AAF and the G5-H1' or C6-H1' proton. The NOEs from the C4-H6 proton to C4 sugar protons are weak, and thus the glycosidic torsion angle in this nucleotide is not well defined by these NMR data. The remaining bases are in the anti conformation, as depicted by the relative magnitude of the H8/H6 to H2' NOEs when compared to the H8/H6 to H1' NOEs. The three base pairs on each end of the duplex exhibit NOEs characteristic of right-handed B-form DNA. Distance restraints obtained from NOESY data recorded at 32 degrees C using a 100-ms mixing time were used in conformational searches by molecular mechanics energy minimization studies. The final, unrestrained, minimum-energy conformation was then used as input for an unrestrained molecular dynamics simulation. Chemical exchange cross peaks are observed, and thus the AAF-9-mer exists in more than a single conformation on the NMR time scale. The NMR data, however, indicate the presence of a predominant conformation (> or = 70%). The structure of the predominant conformation of the AAF-9-mer shows stacking of the fluorene moiety on an adjacent base pair, exhibiting features of the base-displacement [Grunberger, D., Nelson, J. H., et al. (1970) Proc. Natl. Acad. Sci. U.S.A. 66, 488-494] and insertion-denaturation models [Fuchs, R.P.P., & Daune, M. (1971) FEBS Lett. 14, 206-208], while the distal ring of the fluorene moiety protrudes into the minor groove.  相似文献   

8.
9.
Using spectral techniques, the solution conformation of diltiazem was studied in acetonitrile with special reference to the effect of Ca2+ on the drug structure. Complete assignment of the proton resonances in the 1H-NMR spectrum of the drug was made using one-and two-dimensional spectral analyses. A two-dimensional 1H-NOESY spectrum (in the phase-sensitive mode) was obtained to identify the interproton connectivities in the drug molecule. A molecular modeling program involving Monte Carlo simulation and energy minimization was employed to arrive at the structure of the drug. The program was run with and without the input of the interproton distances derived from the NOESY cross peaks. Both the protocols led to a structure of the drug which was generally similar to that reported from X-ray diffraction data on crystalline diltiazem hydrochloride (Kojic-Prodic, et al. Helv. Chim. Acta 1984, 67, 916-926). However, significant differences between the two structures were seen in the orientations of the substituent groups attached to the benzothiazepine ring. Substantial changes in the circular dichroic (CD) and 1H-NMR spectra of diltiazem were observed on addition of Ca2+ up to a mole ratio of 0.5 Ca2+ per drug. Relatively large changes were seen in 1H resonances of the N-methyl protons and the methylene protons attached to the heterocyclic nitrogen. Analysis of the binding isotherms from CD data at 22 +/- 1 degrees C indicated a 2:1 drug:Ca2+ "sandwich" complex with an estimated dissociation constant of 140 microM. One-dimensional difference NOE and two-dimensional NOESY spectra revealed interproton connectivities between two drug molecules that were compatible with the sandwich complex formation. The interproton distances derived from the volume integrals of the NOESY cross peaks were used as geometrical constraints in modeling the Ca(2+)-bound conformation of diltiazem. The minimum-energy conformation corresponded to the sandwich complex where Ca2+ was coordinated to three oxygens in each of the two drug molecules. Combined with our earlier data on the ability of diltiazem to translocate Ca2+ across the lipid bilayer in synthetic liposomes (Ananthanarayanan, V.S.; Taylor, L.; Pirritano, S.Biochem. Cell Biol. 1992, 70, 608-612), the structural data presented here point to a role for Ca2+ in the interaction of diltiazem with its membrane-bound receptor.  相似文献   

10.
The solution structure of one and two repeats of the 'SPKK' DNA-binding motif is reported on the basis of NMR measurements. In dimethylsulphoxide (DMSO) the major population (approximately 90%) of peptides, SPRKSPRK(S2) and GSPKKSPRK(S2b), adopts a conformation, which has two trans prolines. The two 'SP(R/K)K' units in these peptides are equivalent and each adopts a turn structure exchanging with an extended structure. This is suggested by an NOE connectivity of the beta-turn type, between the backbone amide protons of residues (i+2) and (i+3) and NOE connectivities of the Asx(sigma)-turn type, between protons of the ith Ser and the backbone amide proton on residue (i+2). This suggests that each SP(R/K)K unit has a structural intermediate between (or a combination of) a beta-turn and an Asx(sigma)-turn. In 90-10% DMSO/H2O at 4 degrees C the two units of S2 are connected more tightly by folding into a short 3(10) helix, broken at the second proline. For another peptide, Thr-Pro-Arg-Lys(T1), the major population (75%) in 100% DMSO comprises a beta-turn in rapid exchange with an extended structure. We did not observe an NOE connectivity of the Asx(sigma) type with the T1 peptide. A possible structure of the SPKK motif in the complex with DNA is discussed.  相似文献   

11.
The rearrangement and repair of DNA by homologous recombination involves the creation of Holliday junctions, which are cleaved by a class of junction-specific endonucleases to generate recombinant duplex DNA products. Only two cellular junction-resolving enzymes have been identified to date: RuvC in eubacteria and CCE1 from Saccharomyces cerevisiae mitochondria. We have identified a protein from Schizosaccharomyces pombe which has 28% sequence identity to CCE1. The YDC2 protein has been cloned and overexpressed in Escherichia coli, and the purified recombinant protein has been shown to be a Holliday junction-resolving enzyme. YDC2 has a high degree of specificity for the structure of the four-way junction, to which it binds as a dimer. The enzyme exhibits a sequence specificity for junction cleavage that differs from both CCE1 and RuvC, and it cleaves fixed junctions at the point of strand exchange. The conservation of the mechanism of Holliday junction cleavage between two organisms as diverse as S. cerevisiae and S. pombe suggests that there may be a common pathway for mitochondrial homologous recombination in fungi, plants, protists, and possibly higher eukaryotes.  相似文献   

12.
The Escherichia coli RuvC protein endonucleolytically resolves Holliday junctions, which are formed as intermediates during genetic recombination and recombination repair. Previous studies using model Holliday junctions suggested that a certain size of central core of homology and a specific sequence in the junction were required for efficient cleavage by RuvC, although not for binding. To determine the minimum length of sequence homology required for RuvC cleavage, we made a series of synthetic Holliday junctions with various lengths of homologous sequence in the core region. It was demonstrated that a monomobile junction possessing only 2 base pairs of the homology core was efficiently cleaved by RuvC. To study the sequence specificity for cleavage, we made 16 bimobile junctions, which differed only in the homologous core sequence. Among them, 6 junctions were efficiently cleaved. Cleavage occurred by introduction of nicks symmetrically at the 3'-side of thymine in all cases. However, the nucleotide bases at the 3'-side of the thymines were not always identical between the two strands nicked. These results suggest that RuvC recognizes mainly topological symmetry of the Holliday junction but not the sequence symmetry per se, that the thymine residue at the cleavage site plays an important role for RuvC-mediated resolution, and that a long homologous core sequence is not essential for cleavage.  相似文献   

13.
The predominant orientation of the phosphorylcholine polar head group in phosphatidylcholine and sphingomyelin bilayers and cholesterol perturbations of that orientation have been identified by exploiting the 31P (1H) nuclear Overhauser effect (NOE) in the 31P NMR spectra of phospholipid bilayers. In pure egg phosphatidylcholine bilayers, a NOE of 40% is observed. The magnitude of the NOE has been measured as a function of continuous-wave proton-decoupler frequency in order to identify the proton source of the NOE. In pure egg phosphatidylcholine bilayers, the maximum NOE occurs at the N-methyl proton resonance position of the choline moiety. In a modified phosphatidylcholine in which all the N-methyl protons were replaced by deuterium, the NOE arose from methylene protons next to the phosphate. In mixed systems of phosphatidylcholine and phosphatidylethanolamine, and phosphatidylcholine and diphosphatidylglycerol, both phospholipid resonances attained maximum NOE at the position of the N-methyl proton resonance of phosphatidylcholine. An analogous result was obtained with pure sphingomyelin. These results are explained by orienting the phosphorylcholine portion of the molecule parallel to the surface of the bilayer so that the positively charged N-methyl moiety is located close to the negatively charged phosphate on a neighboring phospholipid in an intermolecular interaction. Addition of cholesterol is shown to disrupt the intermolecular interaction in phosphatidylcholine bilayers.  相似文献   

14.
Chemically modified DNA oligonucleotides have been crucial to the success of antisense therapeutics. Although such modifications are ubiquitous in the clinic, high-resolution structural studies of pharmaceutically relevant derivatives have been limited to only a few molecules. We have completed a high-resolution NMR structural study of three DNA.RNA hybrids with the sequence d(CCTATAATCC). r(GGAUUAUAGG). All hybrids contain an unmodified RNA strand, whereas the DNA strand of each hybrid contains one of three different sugar-phosphate backbone linkages at each nucleotide: (1) phosphate, (2) [Rp]-phosphorothioate, or (3) phosphorodithioate. The UV and NMR melting profiles revealed that the normal hybrid is more stable than the [Rp]-phosphorothioate, which in turn is more stable than the phosphorodithioate. Homonuclear two-dimensional nuclear Overhauser effect spectroscopy and double quantum-filtered correlation spectroscopy afforded nearly complete non-labile proton assignments. The three molecules show nearly equivalent chemical shifts, with the exception of H3' protons, which are shifted downfield in a manner that appears correlated with the degree of sulfur substitution at phosphate. All three hybrids exhibit unusually broad linewidths for deoxyribose protons H2' and H2".Distance restraints were calculated from NOE cross-peak intensities via a complete relaxation matrix approach using the program RANDMARDI. Detailed comparison of interproton distances from each hybrid indicates that the three molecules share a common structure, with neither strand in canonical A or B form. Correlation of R factors, calculated using the program CORMA with DNA H2'-base and H3'-base distances, revealed a relative increase in the population of B-type sugar conformations for deoxyriboses in the A+T-rich center of the hybrid sequence. It is widely known that the activity of enzymes which act upon DNA.RNA hybrid substrates (e.g. ribonuclease H) is impacted when the hybrids contain phosphorothioate or phosphorodithioate substitutions. The structural similarity of the three hybrids examined here suggests that factors other than global structure may mediate the activity of these enzymes.  相似文献   

15.
Strategies to obtain the NMR assignments for the HN, N, CO, Calpha and Cbeta resonance frequencies for the human class mu glutathione-S-transferase GSTM2-2 are reported. These assignments were obtained with deuterated protein using a combination of scalar and dipolar connectivities and various specific labeling schemes. The large size of this protein (55 kDa, homodimer) necessitated the development of a novel pulse sequence and specific labeling strategies. These aided in the identification of residue type and were essential components in determining sequence specific assignments. These assignments were utilized in this study to characterize the structure and dynamics of the carboxy-terminal residues in the unliganded protein. Previous crystallographic studies of this enzyme in complex with glutathione suggested that this region may be disordered, and that this disorder may be essential for catalysis. Furthermore, in the related class alpha protein extensive changes in conformation of the C terminus are observed upon ligand binding. On the basis of the results presented here, the time-averaged conformation of the carboxyl terminus of unliganded GSTM2-2 is similar to that seen in the crystal structure. NOE patterns and 1H-15N heteronuclear nuclear Overhauser enhancements suggest that this region of the enzyme does not undergo motion on a rapid time scale.  相似文献   

16.
The specificity of the Escherichia coli RuvC Holliday junction resolvase has been investigated in vitro. RuvC protein cleaves synthetic DNA substrates that model three- or four-stranded recombination intermediates but fails to act upon Y junctions, G/A mismatches, heterologous loop structures, or two-stranded branched junctions. RuvC therefore differs from endonuclease VII of bacteriophage T4 which exhibits broad range specificity. Using related three- and four-stranded synthetic DNA junctions, we show that RuvC cleaves both junctions at the same DNA sequence and requires a region of homology at the junction point. The action of RuvC on three- and four-stranded recombination intermediates made by RecA was also investigated. We found that RuvC fails to resolve three-stranded intermediates in the presence of RecA, although four-stranded intermediates are resolved under the same conditions. However, both three- and four-stranded intermediates are substrates for the nuclease after removal of RecA. We interpret these differences in terms of the contiguity of the RecA nucleoprotein filament which may, under certain conditions, limit access to the Holliday junction resolvase.  相似文献   

17.
Complete 1H and 13C NMR assignments, determined by one- and two-dimensional homo- and hetero-nuclear experiments, are reported for the antigenic capsular polysaccharide (CPS) from Streptococcus pneumoniae serotype 9N (S9 in American nomenclature). Distance constraints derived from 1D NOE difference experiments were combined with energy minimisation (simulated annealing) and molecular dynamics (MD) calculations to determine the most favoured conformation of S9 in aqueous solution at 70 degrees C. NOE values simulated for several static conformational models using the NOEMOL program did not correlate well with experimental values, whereas time averaged interproton distances calculated from 500 ps of restrained MD (using the Tropp formalism to account for rapid internal mobility) were in close agreement with experimentally derived distance estimates.  相似文献   

18.
CCE1 is a Holliday (four-way DNA) junction-specific endonuclease which resolves mitochondrial DNA recombination intermediates in Saccharomycescerevisiae. The junction-resolving enzymes are a diverse class, widely distributed in nature from viruses to higher eukaryotes. In common with most other junction-resolving enzymes, the cleavage activity of CCE1 is nucleotide sequence-dependent. We have undertaken a systematic study of the sequence specificity of CCE1, using a single-turnover kinetic assay and a panel of synthetic four-way DNA junction substrates. A tetranucleotide consensus cleavage sequence 5'-ACT downward arrowA has been identified, with specificity residing mainly at the central CT dinucleotide. Equilibrium constants for CCE1 binding to four-way junctions are unaffected by sequence variations, suggesting that substrate discrimination occurs predominantly in the transition state complex. CCE1 cuts most efficiently at the junction center, but can also cleave the DNA backbone at positions one nucleotide 3' or 5' of the point of strand exchange, suggesting a significant degree of conformational flexibility in the CCE1:junction complex. Introduction of base analogues at single sites in four-way junctions has allowed investigation of the sequence specificity of CCE1 in finer detail. In particular, the N7 moiety of the guanine base-pairing with the cytosine of the consensus sequence appears to be crucial for catalysis. The functional significance of sequence specificity in junction-resolving enzymes is discussed.  相似文献   

19.
E. coli RuvC protein resolves Holliday junctions during genetic recombination and postreplication repair. Using small synthetic junctions, we show that junction recognition is structure-specific and occurs in the absence of metal cofactors. In the presence of Mg2+, Holliday junctions are resolved by the introduction of symmetrically related nicks at the 3' side of thymine residues. The nicked duplex products are repaired by the action of DNA ligase. Within the RuvC-Holliday junction complex, the DNA is distorted such that 2 of the 4 strands become hypersensitive to hydroxyl radical attack. The ionic requirements of binding, hydroxyl radical sensitivity, and strand cleavage indicate three distinct steps in the mechanism of RuvC-mediated Holliday junction resolution: structure-specific recognition, DNA distortion, and sequence-dependent cleavage.  相似文献   

20.
Myoglobin has been extensively studied as a model system for protein folding in vitro. As part of an ongoing study of myoglobin folding, we have synthesized a series of peptide fragments corresponding to portions of the sequence of the sperm whale protein. The conformational preferences of these peptides have been investigated by circular dichroism and nuclear magnetic resonance spectroscopy in aqueous solution. In this paper we describe the folding propensities of two peptides (Mb-G and Mb-H), corresponding to the G- and H-helix segments of the myoglobin sequence. The Mb-G peptide shows evidence of a very small population of helical conformations in aqueous solution, both by CD and NMR. By contrast, the monomeric Mb-H peptide is found by CD to adopt a significant population (ca. 30%) of ordered helix and by NMR to populate helical conformations in rapid dynamic equilibrium with unfolded states. The Mb-H peptide undergoes a well-characterized, concentration-dependent monomer-tetramer equilibrium. At peptide concentrations greater than 1 mM there is an increase in the population of helix, to approximately 85% according to the CD spectrum, through self-association to form a tetramer. Both medium-range NOE connectivities and a CD spectrum characteristic of ordered helix are observed at low peptide concentrations, establishing that helical conformations are present in the monomeric state of Mb-H. The relative helicity at various sites throughout the Mb-H peptide has been estimated using a novel method for assessing the distribution of helical populations based on the relative magnitudes of medium-range d alpha beta (i,i+3) NOE connectivities. The population of ordered helix is seen to be highest in the center of the peptide sequence; the ends of the peptide show evidence of pronounced fraying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号