首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
电弧离子镀TiN/TiAlN复合涂层摩擦磨损性能研究   总被引:1,自引:0,他引:1  
利用阴极电弧离子镀技术,在硬质合金基体上制得5层和20层TiN/TiAlN复合涂层.研究表明,这两种涂层均为典型的B1-NaCl面心立方结构,且均呈(200)择优取向.两种涂层表面光滑平整,粗糙度分别为0.32和0.11,硬度为1 470HV和2 000HV .20层复合涂层的摩擦系数和比磨损率低于5层,表明增加复合层数有利于提高涂层的耐磨损性能,涂层的磨损机理为磨粒磨损.  相似文献   

2.
电弧离子镀制备TiAlN膜工艺研究   总被引:5,自引:0,他引:5  
采用阴极电弧离子镀技术在1Cr18Ni9Ti不锈钢基材上制备TiAlN膜层,镀膜装置为俄罗斯科学院UVN 0.5D2I电弧离子镀膜机,该设备由一个大功率的气体离子源和两个金属蒸发源组成.气体离子源具有气体离子轰击和辅助沉积的特点.研究了电弧电流、负偏压和气体离子源功率等工艺参数对膜层的影响规律.实验结果表明:气体离子源具有明显的细化金属颗粒的作用.提出了制备TiAlN膜层的最佳工艺,得到了厚度为5 ~10μm、相结构为Ti0.5Al0.5N、显微硬度为1200HV0.01的TiAlN膜层.  相似文献   

3.
针对火炮身管服役过程中内膛磨损严重的问题,采用电火花沉积技术在炮钢基体表面制备耐磨损的钨合金涂层,提高火炮身管内膛的摩擦磨损性能.使用纳米压痕仪和往复式摩擦实验机分别测试涂层与基体的纳米力学性能和摩擦磨损性能;采用SEM/EDS、XRD表征涂层和基体的微观形貌、成分与相结构.结果表明,钨合金涂层由γ-Fe(W)和α-F...  相似文献   

4.
钢铜摩擦副表面粗糙度,硬度对摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
本文利用双圆盘滚子试验机,研究了钢铜摩擦副试件表面粗糙度、硬度对摩擦磨损性能的影响机理。通过形貌仪和显微镜的检测,分析了不同硬度条件下,表面粗糙度的作用效果。同时,还在扫描电镜上分析了硬度影响曲线的突变状态,提出了在现有生产加工条件下,减少钢铜摩擦副(主要指蜗杆传动副)磨擦,降低磨损的几个有效途径。  相似文献   

5.
钛合金表面电弧离子镀TiAlN涂层的组织与抗氧化性能   总被引:1,自引:0,他引:1  
运用电弧离子镀技术,采用独立Ti、Al靶材,在TC4钛合金表面制备出厚度为6.5μm的TiAlN涂层,利用SEM、EDS对涂层微观组织进行了分析,并测试了涂层的力学和抗氧化性能.结果表明,涂层表面存在由粒子撞击时所产生的凹坑和由液滴碰撞表面而铺平、凝固形成的层片状组织;多弧离子镀试样表面粗糙度有升高的趋势.使用电加热马弗炉对试样进行800℃空气氧化试验并做出了试样的增重率曲线图,证明试样的抗氧化性能经表面电弧离子镀TiAlN后得到了大幅的提高.  相似文献   

6.
45钢摩擦副摩擦磨损性能的试验分析   总被引:1,自引:0,他引:1  
减少机械运动副的摩擦磨损是提高机械产品的机械效率和机械寿命主要途径。文章在梯姆肯摩擦磨损试验机上对45钢在机械油润滑下的摩擦磨损性能进行了试验研究,得到了其摩擦磨损性能与载荷、滑动速度、硬度及硬度差等之间的相互关系以及P*(极限载荷)与V*(极限滑动速度)之间的相互关系,为机械运动副的参数选择、结构设计及其制造提供了必要的理论依据。  相似文献   

7.
采用不同Al含量的Ti/Al合金靶材在硬质合金刀具上沉积TiAlN薄膜,研究靶材中不同的Al含量对TiAlN薄膜表面粗糙度、硬度以及膜基结合力等性能的影响,通过显微硬度仪、划痕仪、金相显微镜和XRD等仪器分别对薄膜的硬度、结合力、组织结构等主要性能进行测试分析。实验结果表明:随着Ti/Al合金靶中Al含量的增加,TiAlN薄膜的硬度先增加后减小,膜基结合力逐渐增加;当Al在Ti/Al合金靶材中所占的比值为2:3时,TiAlN薄膜的硬度、耐磨性等综合力学性能最佳。  相似文献   

8.
采用俄罗斯UVN 0.5D2I脉冲离子束辅助电弧离子镀沉积设备,在高速钢W18Cr4V基材上沉积TiAlN膜层。研究了膜层沉积之前N离子束轰击基材以及膜层沉积过程中N离子束辅助轰击对TiAlN膜层显微硬度的影响。结果表明:膜层沉积之前,N离子轰击得到高度洁净的表面,使基材的显微硬度由原来的900HV0.01提高到1230HV0.01。膜层沉积过程中,脉冲N离子束轰击,消除了膜层中的硬度"软点"及阴影效应,增加(Ti,Al)N相的含量,膜层的内部产生了压应力,这些因素显著提高了膜层的硬度,膜层的最高硬度为2530HV0.01。但轰击能量不能过高,否则会降低膜层的显微硬度。  相似文献   

9.
为了研究不同偏压对TiAlN薄膜性能的影响以及薄膜体系膜基硬度比随载荷的变化关系,采用多弧离子镀的方法在Ti6Al4V合金表面制备TiAlN薄膜,利用扫描电子显微镜、x 射线衍射仪、全自动显微硬度计等设备对膜层的微观组织结构和力学性能进行了测试.结果表明,TiAlN膜层由Ti2AlN(hcp)相组成.在恒定载荷条件下,体系的膜基硬度比随载荷的增加而减小.当载荷小于300g时,偏压对膜基硬度比与载荷关系曲线呈不规则影响.载荷超过300g以后,几乎没有影响.  相似文献   

10.
渗硫钢表面摩擦特性的模型试验研究   总被引:2,自引:0,他引:2  
对经不同预先热处理钢的渗硫层的机械性能以及结构特点,化学成分进行了观察测定了,提出了硬度沿层深的变化规律,并以销盘摩擦方式用标准微型钢球与参硫处理的钢制圆盘摩擦特性试验。  相似文献   

11.
真空条件下GCr15钢摩擦磨损性能研究   总被引:1,自引:0,他引:1  
为研究登月车轴承内部摩擦磨损机理,研制了真空球盘式摩擦磨损试验机,并在常压和真空(真空度为6×10~(-3)Pa)条件下试验研究了GCr15钢球/GCr15钢盘配副的摩擦磨损性能。结果表明:真空条件下摩擦面之间的高温使得试件剪切强度和粘着力降低,从而摩擦系数低于常压下。而真空条件下配副更易发生粘着,产生的磨屑更多,磨损量更大。  相似文献   

12.
通过对9SiCr钢表面进行合金激光熔覆处理,在摩擦磨损实验机上对熔覆合金钢与Q235钢配副进行了摩擦磨损性能实验.通过摩擦磨损实验研究了参数如载荷、滑动距离、滑动速度、润滑条件等对Q235钢与熔覆合金钢的磨损量的影响,熔覆合金钢与Q235钢的磨损量与压力和滑动速度成正比.Ni合金钢的耐磨性比Co合金钢要好.通过扫描电镜分析了熔覆合金磨损机理,熔覆合金钢磨损主要以磨粒为主,同时表面存在大量凹坑,而Q235钢以磨粒和塑性变形为主.  相似文献   

13.
利用脉冲真空电孤离子镀技术在3Cr13不锈钢上制备了类金刚石(DLC)薄膜.通过Raman光谱分析了膜的结构特征,采用摩擦磨损试验机测试了薄膜在不同载荷下的摩擦系数,运用划痕仪研究了膜基的结合强度.结果表明:所镀制的薄膜具有典型类金刚石结构特征,膜中ID/IG为1.33;摩擦系数随着载荷的增大而减小,载荷为5N,转速120r/min时的摩擦系数为0.02;Ti过渡层的引入显著地提高了膜基结合力.  相似文献   

14.
为了研究多层膜的腐蚀性能,促进多层膜在生产中的应用,采用电弧离子镀技术,通过调整环境N2和Ar气的时间比例在铜衬底上成功制备了不同调制周期的Ti/TiN多层膜.利用x 射线衍射谱和交流阻抗谱研究了该多层膜的结构和腐蚀性能.表面形貌显示,沉积的Ti/TiN多层膜具有明显的周期性,环境中N2和Ar气的时间比例决定了多层膜的调制周期,N2气时间越长,多层膜中TiN相层越厚.腐蚀性能测定表明,多层膜的调制周期影响其耐蚀性,当调制周期为550nm时,沉积膜的耐腐蚀性最好.  相似文献   

15.
通过对低合金耐磨钢热处理工艺试验.研究了不同淬火和回火温度对材料组织和性能的影响.结果表明:经过920℃/30min水淬+260℃/2h回火处理后,试样晶粒细小,组织为板条马氏体、碳化物和少量残余奥氏体,并具有最佳的冲击韧性和硬度.  相似文献   

16.
马氏体不锈钢等离子堆焊铁基合金组织及磨损性能   总被引:2,自引:0,他引:2  
为了研究马氏体不锈钢的表面性能,采用等离子堆焊技术在Z5CND16-04不锈钢表面制备铁基合金堆焊层.采用扫描电子显微镜、能谱仪、X射线衍射仪、显微硬度计及销盘磨损实验机等检测设备,对堆焊层的组织结构、成分、硬度和磨损性能进行了研究.结果表明,铁基合金堆焊层主要由α-Fe、(Fe,Cr,Mo)7C3和(Fe,Cr,Mo)23C6相组成,添加稀土元素后相组成无明显变化.铁基合金堆焊层的硬度和耐磨性均明显高于马氏体不锈钢基材.添加适量的CeO2后,明显细化了堆焊层的显微组织.  相似文献   

17.
通过改变激光功率和扫描速度等参数,研究其对45钢激光表面强化组织与性能的影响。实验结果表明,单道扫描时,当保持扫描速度v为15mm/s时,增加激光功率P,可增加硬化层的深度,最大深度可达1.5mm以上。另外,P/v比值越大,硬化层深度越大;而当P/v比值保持不变时,硬化层深度随着激光功率的增加而增加,其中激光功率从1.2kW到1.8kW时,硬化层深度值增加较快;当激光功率大于1.8kW后,深度值的增长随功率增加变缓;而且硬化层的硬度都达到700HV以上,远高于基体的硬度。在激光多道搭接扫描时,激光能量的再次输入会导致靠近搭接区的前一道硬化层产生回火软化,其硬度接近基体的硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号