首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is planned to synthesise new biocompatible, nano antimicrobial formulation against biofilm producing strains. Aqueous root extract of Arctium lappa l. was used to synthesise ceria nanoparticles (CeO2 ‐NPs). The synthesised nanoparticles were encapsulated with nano‐chitosan by sol–gel method and characterised using standard techniques. Gas chromatography‐mass spectrometer of Arctium lappa l. revealed the presence of ethanol, acetone, 1‐ propanol, 2‐methylethane, 1,1‐di‐ethoxy, 1‐Butanol, and oleic acid acted as reducing and surface stabilising agents for tailoring morphology of CeO2 ‐NPs. Erythrocyte integrity after treatment with synthesised nanomaterials was evaluated by spectrophotometer measurement of haemoglobin release having biocompatibility. Scanning electron microscopy revealed the formation of mono dispersed beads shaped particles with mean particle size of 26.2 nm. X‐ray diffractometry revealed cubic crystalline structure having size of 28.0 nm. After encapsulation by nano‐chitosan, the size of CeO2 ‐NPs enhances to 48.8 nm making average coverage of about 22.6 nm. The synthesised nanomaterials were found effective to disrupt biofilm of S. aureus and P. aeruginosa. Interestingly, encapsulated CeO2 ‐NPs revealed powerful antibacterial and biofilm disruption activity examined by fluorescent live/dead staining using confocal laser scanning microscopy. The superior antibacterial activities exposed by encapsulated CeO2 ‐NPs lead to the conclusion that they could be useful for controlling biofilm producing multidrug resistance pathogens.Inspec keywords: particle size, microorganisms, organic compounds, nanomedicine, sol‐gel processing, cellular biophysics, scanning electron microscopy, optical microscopy, nanoparticles, antibacterial activity, fluorescence, biomedical materials, nanofabrication, X‐ray diffraction, chromatography, filled polymers, cerium compoundsOther keywords: microbial biofilms, aqueous root extract, sol–gel method, gas chromatography‐mass spectrometer, 1‐di‐ethoxy, 1‐Butanol, nanomaterial synthesis, mean particle size, antibacterial activities, ethanol, acetone, 1‐ propanol, biocompatible ceria‐nanoparticle encapsulation, nano‐chitosan, Arctium lappa l., oleic acid, erythrocyte integrity, spectrophotometer measurement, haemoglobin release, mono dispersed beads shaped particle formation, X‐ray diffractometry, cubic crystalline structure, fluorescent live/dead staining, confocal laser scanning microscopy, multidrug resistance pathogens, size 26.2 nm, size 28.0 nm, size 48.8 nm, size 22.6 nm, CeO2   相似文献   

2.
In the present study Delftia sp. Shakibaie, Forootanfar, and Ghazanfari (SFG), was applied for preparation of biogenic Bi nanoparticles (BiNPs) and antibacterial and anti‐biofilm activities of the purified BiNPs were investigated by microdilution and disc diffusion methods. Transmission electron micrographs showed that the produced nanostructures were spherical with a size range of 40–120 nm. The measured minimum inhibitory concentration of both the Bi subnitrate and BiNPs against three biofilms producing bacterial pathogens of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were found to be above 1280 µg/ml. Addition of BiNPs (1000 µg/disc) to antibiotic discs containing tobramycin, nalidixic acid, ceftriaxone, bacitracin, cefalexin, amoxicillin, and cefixime significantly increased the antibacterial effects against methicillin‐resistant S. aureus (MRSA) in comparison with Bi subnitrate (p  < 0.05). Furthermore, the biogenic BiNPs decreased the biofilm formation of S. aureus, P. aeruginosa, and P. mirabilis to 55, 85, and 15%, respectively. In comparison to Bi subnitrate, BiNPs indicated significant anti‐biofilm activity against P. aeruginosa (p  < 0.05) while the anti‐biofilm activity of BiNPs against S. aureus and P. mirabilis was similar to that of Bi subnitrate. To sum up, the attained results showed that combination of biogenic BiNPs with commonly used antibiotics relatively enhanced their antibacterial effects against MRSA.Inspec keywords: nanoparticles, bismuth, nanofabrication, antibacterial activity, microorganisms, biomedical materials, toxicology, nanomedicine, transmission electron microscopy, biochemistry, drugsOther keywords: Bi, size 40.0 nm to 120.0 nm, mass 1000.0 mug, Delftia sp. SFG, Staphylococcus aureus, antibiofilm mechanisms, antibiofilm effect, antibiofilm activity, Proteus mirabilis, Pseudomonas aeruginosa, purified biogenic BiNPs, antibacterial biofilm mechanisms, Bi subnitrate, antibacterial effects  相似文献   

3.
Pseudomonas aeruginosa is an opportunistic nosocomial pathogenic microorganism causing majority of acute hospital‐acquired infections and poses a serious public health concern. The persistence of bacterial infection can be attributed to the highly synchronised cell‐to‐cell communication phenomenon, quorum sensing (QS) which regulates the expression of a number of virulence factors and biofilm formation which eventually imparts resistance to the conventional antimicrobial therapy. In this study, the anti‐quorum sensing and anti‐biofilm potential of ferulic acid encapsulated chitosan‐tripolyphosphate nanoparticles (FANPs) was investigated against P. aeruginosa PAO1 and compared with native ferulic acid. Dynamic light scattering and transmission electron microscopic analysis confirmed the synthesis of FANPs with mean diameter of 215.55 nm. FANPs showed significant anti‐quorum sensing activity by downregulating QS‐regulated virulence factors. In addition, FANPs also significantly attenuate the swimming and swarming motility of P. aeruginosa PAO1. The anti‐biofilm efficacy of FANPs as compared to native ferulic acid was established by light and confocal laser scanning microscopic analysis. The promising results of FANPs in attenuating QS highlighted the slow and sustained release of ferulic acid at the target sites with greater efficacy suggesting its application towards the development of anti‐infective agents.Inspec keywords: microorganisms, nanofabrication, nanoparticles, nanomedicine, light scattering, cellular biophysics, drugs, antibacterial activity, drug delivery systems, filled polymers, materials preparationOther keywords: size 215.55 nm, ferulic acid encapsulated chitosan‐tripolyphosphate nanoparticles, dynamic light scattering, QS‐regulated virulence factors, cell‐to‐cell communication phenomenon, nosocomial pathogenic microorganism, anti‐quorum sensing activity, Pseudomonas aeruginosa PAO1, anti‐infective agents, confocal laser scanning microscopic analysis, anti‐biofilm efficacy, transmission electron microscopic analysis, native ferulic acid, FANPs, anti‐biofilm potential, conventional antimicrobial therapy, bacterial infection, acute hospital‐acquired infections, biofilm formation  相似文献   

4.
In the present study, biogenic silica nanoparticles (bSNPs) were synthesized from groundnut shells, and thoroughly characterized to understand its phase, and microstructure properties. The biopolymer was synthesized from yeast Wickerhamomyces anomalus and identified as Poly (3‐hydroxybutyrate‐co ‐3‐hydroxyvalerate) (PHBV) by GC‐MS and NMR analysis. The bSNPs were reinforced to fabricate PHBV/SiO2 nanocomposites via solution casting technique. The fabricated PHBV/SiO2 nanocomposites revealed intercalated hybrid interaction between the bSNPs and PHBV matrix through XRD analysis. PHBV/SiO2 nanocomposites showed significant improvement in physical, chemical, thermo‐mechanical and biodegradation properties as compared to the bare PHBV. The cell viability study revealed excellent biocompatibility against L929 mouse fibroblast cells. The antibacterial activity of PHBV/SiO2 nanocomposites was found to be progressively improved upon increasing bSNPs concentration against E. coli and S. aureus.Inspec keywords: X‐ray diffraction, microorganisms, antibacterial activity, nanoparticles, cellular biophysics, nanofabrication, silicon compounds, nanocomposites, filled polymers, nanomedicine, biomedical materials, casting, biodegradable materials, food packaging, food safety, biological NMROther keywords: antibacterial applications, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate), PHBV matrix, biodegradable PHBV‐SiO2 nanocomposite, thermomechanical biodegradation properties, biogenic silica nanoparticles, groundnut shells, microstructure properties, biopolymer, yeast Wickerhamomyces anomalus, GC‐MS, NMR analysis, food packaging, intercalated hybrid interaction, XRD analysis, cell viability study, solution casting, SiO2   相似文献   

5.
The main emphasis herein is on the eco‐friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone‐coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram‐positive and Gram‐negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram‐positive and Gram‐negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.  相似文献   

6.
Foley catheters are inevitable in health care unit. Pathogens colonise and form biofilm on catheter causing catheter‐associated urinary tract infection. Therefore, the authors aimed to functionalise catheter to resist biofilm formation. The authors impregnated urinary catheters with a synergistic combination of antibiotics and silver nanoparticles (SNPs) to evaluate antibiofilm efficacy in vitro and in vivo. SNPs were synthesised using Spirulina platensis. Synergy between the SNPs and antibiotics was determined by the checker‐board method. In vivo efficacy of the functionalised catheters was assessed in mice. Liver and kidney function tests of mice were performed. The in vitro anti‐adherence activity of the functionalised catheters was evaluated after 2 years. Nanoparticle sizes were 42–75 nm. Synergistic activity was observed among SNPs (2 µg/ml), amikacin (6.25 µg/ml), and nitrofurantoin (31.25 µg/ml). In mice, catheters functionalised with combinations of antibiotics and SNPs exhibited no colonisation until Day 14. Blood, liver, and kidney tests were normal. After 2 years, catheters functionalised with antibiotics exhibited 25% inhibition of bacterial adhesion, and catheters functionalised with the nanoparticle‐antibiotic combination exhibited 90% inhibition. Impregnation of urinary catheters with a synergistic combination of antibiotics and SNPs is an efficient and promising method for preventing biofilm formation.Inspec keywords: catheters, drugs, silver, nanoparticles, nanomedicine, liver, kidney, blood, microorganisms, adhesion, biomechanics, cellular biophysicsOther keywords: Foley catheters, synergistic nanoparticle‐antibiotics combination, silver nanoparticles, biofilm formation resitance, health care unit, pathogens, urinary tract infection, SNP, Spirulina platensis, checker‐board method, liver function, kidney function, vitro antiadherence activity, amikacin, nitrofurantoin, blood, bacterial adhesion, size 42 nm to 75 nm, Ag  相似文献   

7.
Chondrosarcoma is the second‐most malignant cancer of the bone and routine treatments such as chemotherapy and radiotherapy have not responded to the treatment of this cancer. Due to the resistance of chondrosarcoma to radiotherapy, the combination of therapeutic methods has been considered in recent years. In this study, a novel combination approach is used that allows photodynamic therapy to be activated by X‐rays. The synthesis of Mn‐doped zinc sulphide (ZnS) quantum dots was carried out and chlorin e6 photosensitiser attached by covalent and non‐covalent methods and their application as an intracellular light source for photodynamic activation was investigated. The toxicity of each nanoparticles was evaluated on chondrosarcoma cancer cells (SW1353) before and after radiation. Also, the effect nanoparticle‐photosensitiser conjugated type was investigated in the therapeutic efficacy. The characterisation test (SEM, TEM, EDS, TGA, XRD and ICP analyses) was shown successful synthesis of Mn‐doped ZnS quantum dots. Chondrosarcoma cancer cell viability was significantly reduced when cells were treated with MPA‐capped Mn‐doped ZnS quantum dots‐chlorin e6 with spermine linker and with covalent attachment (P  ≤ 0.001). These results indicate that X‐ray can activate the quantum dot complexes for cancer treatment, which can be a novel method for treatment of chondrosarcoma.Inspec keywords: semiconductor quantum dots, X‐ray diffraction, transmission electron microscopy, cadmium compounds, cellular biophysics, drugs, manganese, biomedical materials, cancer, quantum dots, nanofabrication, ultraviolet spectra, zinc compounds, fluorescence, scanning electron microscopy, nanoparticles, nanomedicine, bone, photochemistry, photodynamic therapy, tumours, II‐VI semiconductors, laser applications in medicineOther keywords: noncovalent methods, photodynamic activation, chondrosarcoma cancer cells, chondrosarcoma cancer cell viability, quantum dot complexes, cancer treatment, malignant cancer, routine treatments, radiotherapy, therapeutic methods, Mn‐doped zinc sulphide quantum dots, in vitro study, MPA‐capped Mn‐doped ZnS quantum dots‐chlorin e6, nanoparticle‐photosensitiser conjugated type, ZnS, Mn, ZnS:Mn  相似文献   

8.
In this study, the ketoconazole‐conjugated zinc oxide (ZnO) nanoparticles were prepared in a single‐step approach using dextrose as an intermediate compound. The physical parameters confirmed the drug conjugation with ZnO and their size was around 70–75 nm. The drug loading and in vivo drug release studies indicated that the –CHO group from the dextrose increase the drug loading up to 65% and their release kinetics were also studied. The anti‐fungal studies indicated that the prepared nanoparticles exhibit strong anti‐fungal activity and the minimum concentration needed is 10 mg/ml. The nanoparticles loaded semi‐solid gel was prepared using carbopol, methylparaben, propyl paraben and propylene glycol. The in vitro penetration of the ketoconazole‐conjugated nanoparticles was studied using the skin. The results indicated that the semi‐solid gel preparations influenced the penetration and also favoured the accumulation into the skin membrane. The veterinary clinical studies indicated that the prepared gel is highly suitable for treatment of Malassezia.Inspec keywords: II‐VI semiconductors, skin, biomedical materials, antibacterial activity, wide band gap semiconductors, drug delivery systems, nanomedicine, drugs, diseases, gels, nanofabrication, nanoparticles, zinc compounds, biomembranes, veterinary medicineOther keywords: strong anti‐fungal activity, propyl paraben, propylene glycol, semisolid gel preparations, skin membrane, veterinary clinical studies, semisolid formulation, skin disease, ketoconazole‐conjugated zinc oxide nanoparticles, single‐step approach, physical parameters, drug conjugation, drug loading, release kinetics, dextrose, in vivo drug release studies, carbopol, methylparaben, in vitro penetration, Malassezia, ZnO  相似文献   

9.
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anti‐epidermal growth factor receptor monoclonal antibody (anti‐EGFR‐SPIONs) were characterised, and its cytotoxicity effects, ex vivo and in vivo studies on Lewis lung carcinoma (LLC1) cells in C57BL/6 mice were investigated. The broadband at 679.96 cm−1 relates to Fe–O, which verified the formation of the anti‐EGFR‐Mab with SPIONs was obtained by the FTIR. The TEM images showed spherical shape 20 and 80 nm‐sized for nanoparticles and the anti‐EGFR‐SPIONs, respectively. Results of cell viability at 24 h after incubation with different concentrations of nanoprobe showed it has only a 20% reduction in cell viabilities. The synthesised nanoprobe administered by systemic injection into C57BL/6 mice showed good Fe tumour uptake and satisfied image signal intensity under ex vivo and in vivo conditions. A higher concentration of nanoprobe was achieved compared to non‐specific and control, indicating selective delivery of nanoprobe to the tumour. It is concluded that the anti‐EGFR‐SPIONs was found to be as an MR imaging contrast nanoagent for lung cancer (LLC1) cells detection.Inspec keywords: toxicology, biomedical MRI, lung, magnetic particles, biomedical materials, nanofabrication, nanomagnetics, transmission electron microscopy, nanomedicine, superparamagnetism, nanoparticles, iron compounds, proteins, cellular biophysics, molecular biophysics, cancer, tumours, Fourier transform infrared spectraOther keywords: MR imaging contrast agent, LLC1, superparamagnetic iron oxide nanoparticles, Lewis lung carcinoma cells, ex vivo conditions, cell viability, antiepidermal growth factor receptor antibody‐based iron oxide nanoparticles, antiEGFR‐SPION, lung cancer cell detection, antiepidermal growth factor receptor monoclonal antibody, cytotoxicity effects, C57BL‐6 mice, antiEGFR‐Mab, FTIR spectra, TEM, spherical shape, incubation, nanoprobe concentrations, systemic injection, Fe tumour uptake, image signal intensity, in vivo conditions, time 24.0 hour, Fe3 O4   相似文献   

10.
Mastitis is an important economic disease causing production losses in dairy industry. Antibiotics are becoming ineffective in controlling mastitis due to the emergence of resistant strains requiring the development of novel therapeutic agents. In this study, the authors present the phytochemical synthesis of silver nanoparticles (AgNPs) with acetyl‐11‐α‐keto‐β‐boswellic acid and evaluation of their activity in Staphylococcus aureus induced murine mastitis. Boswellic acid mediated AgNP (BANS) were oval, polydispersed (99.8 nm) with an minimum inhibitory concentration of 0.033 µg ml−1 against S. aureus, inhibitory concentration (IC50) of 30.04 µg ml−1 on mouse splenocytes and safe at an in vivo acute oral dose of 3.5 mg kg−1 in mice. Mastitis was induced in lactating mice by inoculating S. aureus (log10 5.60 cfu) and treated 6 h post‐inoculation with BANS (0.12 mg kg−1, intramammary and intraperitoneal), and cefepime (1 mg kg−1, intraperitoneal). S. aureus inoculated mice showed increased bacterial load, neutrophil infiltration in mammary glands and elevated C‐reactive protein (CRP) in serum. Oxidative stress was also observed with elevated malondialdehyde level, superoxide dismutase (SOD) and catalase (CAT) activities. BANS treatment significantly (P  < 0.05) reduced bacterial load, CRP, SOD, CAT activities and neutrophil infiltration in affected mammary glands. BANS could be a potential therapeutic agent for managing bovine mastitis.Inspec keywords: nanomedicine, nanoparticles, silver, antibacterial activity, drugs, diseases, enzymesOther keywords: antibacterial effects, antiinflammatory effects, antioxidant effects, acetyl‐11‐α‐keto‐β‐boswellic acid, mediated silver nanoparticles, experimental murine mastitis, economic disease, dairy industry, resistant strains, phytochemical synthesis, Staphylococcus aureus, minimum inhibitory concentration, inoculating S. aureus, neutrophil infiltration, mammary glands, elevated C‐reactive protein, superoxide dismutase, catalase, bovine mastitis, Ag  相似文献   

11.
Eco‐friendly synthesis of the silver nanoparticles (AgNPs) has a number of advantages like simplicity, biocompatibility, low toxicity in nature over their physical and chemical methods. In the present study, the authors report biosynthesized AgNPs using the root extract of the perennial plant ‘Spiny gourd’ (Momordica dioica) and investigated their anti‐bacterial application with mechanistic approaches. Different biophysical techniques such as UV‐Vis spectroscopy, FTIR, XRD, TEM, SAED, and DLS were employed for AgNPs characterization. The synthesized AgNPs were polydispersed, crystalline in nature, with anionic surface (−22.3 mV), spherical in shape with an average size of 13.2 nm. In addition, the AgNPs were stable in room temperature and in different biological buffers. The anti‐bacterial activities of AgNPs were studied with respect to the pathogens such as Bacillus subtilis, Staphylococcus aureus (Gram‐positive), Pseudomonas aeruginosa, Escherichia coli, Klebsiella planticola (Gram‐negative), and Candida albicans. Also, mechanistic studies of AgNPs such as protein leakage assay, nucleic acid leakage assay, ATP leakage assay, ROS accumulation, determination of biofilm degrading activity, measurement of potassium, showing that the synthesized AgNPs are capable of containing a potential application in the antimicrobial therapeutic agents and the pharmaceutical industry.  相似文献   

12.
This study reports an eco‐friendly‐based method for the preparation of biopolymer Ag–Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK‐(Ag–Au) NPs was confirmed by UV‐absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK‐(Ag–Au) NPs were of 1–12 nm in size. The anti‐proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real‐time polymerase chain reaction (PCR) techniques. Expression studies revealed up‐regulation of p53, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors (PPAR) PPARa and PPARb, genes and down‐regulation of Bcl‐2 and Bcl‐x(K) genes, in B16F10 cells treated with GK‐(Ag–Au) NPs confirming the anti‐proliferative properties of the nanoparticles.Inspec keywords: nanomedicine, transmission electron microscopy, genetics, cellular biophysics, molecular biophysics, enzymes, nanofabrication, gold, silver, scanning electron microscopy, nanoparticles, Fourier transform infrared spectra, atomic force microscopy, biomedical materialsOther keywords: size 1.0 nm to 12.0 nm, Ag‐Au, anti‐proliferative assessment, eco‐friendly‐based method, anti‐proliferative activity, anti‐proliferative properties, biopolymer‐based Ag–Au bimetallic nanoparticle, Cochlospermum gossypium, gum kondagogu, biopolymer preparation, biogenic synthesis, UV‐absorption, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, MTT assay, confocal microscopy, flow cytometry, caspase‐3, caspase‐9, peroxisome proliferator‐activated receptors, Bcl‐2 gene, Bcl‐x(K) gene, B16F10 cells  相似文献   

13.
This report investigates the spraying of nano‐silica and fullerene on cucumber leaves to expose their ability to reduce the toxicity and uptake of metal(loid)s. Cucumber seedlings were randomly divided into six treatment groups: 10 mg/L nano‐SiO2, 20 mg/L nano‐SiO2, 10 mg/L Fullerene, 20 mg/L Fullerene, 5 mg/L Fullerene + 5 mg/L nano‐SiO2, and 10 mg/L Fullerene + 10 mg/L nano‐SiO2. Nano‐silica‐treated plants exhibited evidence of the potential mitigation of metal(loid)s poisoning. Specifically, results showed that 20 mg/L of nano‐silica promoted Cd uptake by plants; comparatively, 10 mg/L of nano‐silica did not significantly increase the silicon content in plants. Both low‐concentration combined treatment and low‐concentration fullerene groups inhibited metal(loid)s uptake by plants. Scanning electron microscopy (SEM) was then used to observe the surface morphology of cucumber leaves. Significant differences were observed on disease resistance in plants across the different nano‐material conditions. Collectively, these findings suggest that both nano‐silica materials and fullerene have the potential to control metal(loid)s toxicity in plants.Inspec keywords: soil pollution, cadmium, silicon compounds, surface morphology, fullerenes, toxicology, fertilisers, scanning electron microscopy, crops, spraying, nanoparticles, sorption, plant diseases, agricultural safetyOther keywords: cucumber leaves, nanosilica materials, fullerene, spraying process, metalloids absorption, toxicity, scanning electron microscopy, surface morphology, disease resistance, soil pollution, SiO2 , Cd  相似文献   

14.
Water‐soluble, stable nanoparticles of elemental sulphur with a size of 9‐52 nm have been synthesised using the stabilising potential of starch. Sulphide anions were used as sulphur precursors that were generated earlier from the bulk powder sulphur in the base‐reduction system NaOH‐N2H4·H2O followed by their oxidation with molecular oxygen to element sulphur atoms. Using a set of modern spectral and microscopic methods (XRD, optical spectroscopy, DLS, TEM), the phase state, elemental composition of the nanocomposites and their nanomorphological characteristics have been investigated. It was found that nanocomposites are formed as sulphur particles with the shape which is nearly spherical dispersed in the polysaccharide starch matrix with a pronounced tendency to cluster into ring formations. Water solubility and stability of the obtained nanoparticles is ensured by sorption of starch macromolecules on the surface of sulphur nanoparticles, with the thickness of the stabilising shell in a range of 10‐171 nm. In vitro experiments were carried out to study the anti‐microbial activity of the obtained sulphur nanocomposite (1.6% S) using the propidium iodide fluorescent dye staining method and the diffusion method. It showed that the water solution of the starch‐capped sulphur nanoparticles at the concentration of 6.25 µg/ml had a pronounced anti‐phytopathogenic activity against the potato ring rot pathogen Clavibacter michiganensis subsp. sepedonicus.  相似文献   

15.
A highly sensitive, non‐invasive, and rapid HBV (Hepatitis B virus) screening method combining membrane protein purification with silver nanoparticle‐based surface‐enhanced Raman scattering (SERS) spectroscopy was developed in this study. Reproducible serum protein SERS spectra were obtained from cellulose acetate membrane‐purified human serum from 94 HBV patients and 89 normal groups. Tentative assignments of serum protein SERS spectra showed that the HBV patients primarily led to specific biomedical changes of serum protein. Principal components analysis and linear discriminate analysis were introduced to analyse the obtained spectra, with the diagnostic sensitivity of 92.6% and specificity of 77.5% were achieved for differentiating HBV patients from normal groups.Inspec keywords: patient diagnosis, surface enhanced Raman scattering, proteins, biomembranes, principal component analysis, purification, silver, nanoparticles, nanomedicine, diseasesOther keywords: serum analysis method, cellulose acetate membrane purification, surface‐enhanced Raman spectroscopy, noninvasive HBV screening, rapid HBV screening method, Hepatitis B virus, membrane protein purification, silver nanoparticle‐based surface‐enhanced Raman scattering spectroscopy, reproducible serum protein SERS spectra, cellulose acetate membrane‐purified human serum, linear discriminate analysis, diagnostic sensitivity, HBV patient, principal components analysis  相似文献   

16.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   

17.
Tin oxide (SnO2) nanoparticles were synthesised using various surfactants of different charges (n‐cetyl trimethyl ammonium bromide, sodium dodecyl sulphate and TRITON X‐100) by the co‐precipitation method. The synthesised nanomaterials were characterised using different techniques to study their structural, surface morphological, optical and anti‐bacterial activities. X‐ray diffraction patterns revealed the formation of a tetragonal rutile structure in pure and surfactants‐aided SnO2 nanoparticles and the results show good agreement with JCPDS data [41‐1445]. The crystallite size of SnO2 nanoparticles was found to decrease with the addition of surfactants. Scanning electron microscopy images exhibit spherical shape morphology with an average diameter of 30–75 nm for pure and surfactants‐aided SnO2 nanoparticles. The band gap energy of the prepared materials was estimated from the UV–visible absorption spectra and a considerable increase in band gap energy was observed in surfactants‐aided SnO2 nanoparticles (3.487, 3.57, 3.50 and 3.3 eV). The antibacterial activities of the synthesised nanoparticles were studied against Escherichia coli and Staphylococcus aureus bacteria.Inspec keywords: visible spectra, precipitation (physical chemistry), ultraviolet spectra, nanofabrication, tin compounds, X‐ray diffraction, crystallites, titanium compounds, particle size, antibacterial activity, surfactants, nanoparticles, energy gap, scanning electron microscopy, surface morphology, semiconductor materials, optical constants, semiconductor growthOther keywords: SnO2 , co‐precipitation method, anti‐bacterial activities, X‐ray diffraction patterns, tetragonal rutile structure, spherical shape morphology, band gap energy, sodium dodecyl sulphate surfactant, surface morphology, surfactant‐aided SnO2 nanoparticles, crystallite size, scanning electron microscopy, UV–visible absorption spectra, Escherichia coli, Staphylococcus aureus bacteria, TRITON X‐100 surfactant, n‐cetyl trimethyl ammonium bromide surfactant  相似文献   

18.
Chemically modified mesoporous silica nanoparticles (MSNs) are of interest due to their chemical and thermal stability with adjustable morphology and porosity; therefore, it was aimed to develop and compare the MCM‐41 MSNs functionalised with imidazole groups (MCM‐41‐Im) to unmodified (MCM‐41‐OH) and primary amine functionalised (MCM‐41‐NH2) MSNs for experimental gene delivery. The results show efficient transfection of the complexes of the plasmid and either MCM‐41‐NH2 or MCM‐41‐Im. Furthermore, following transfection of HeLa cells using MCM‐41‐Im, an enhanced GFP expression was achieved consistent with the noticeable DNase1 protection and endosomal escape properties of MCM‐41‐Im using carboxyfluorescein tracer.Inspec keywords: condensation, mesoporous materials, silicon compounds, nanoparticles, DNA, surface chemistry, porosity, gene therapy, cellular biophysics, biomedical materials, nanomedicine, nanofabrication, molecular biophysics, biochemistryOther keywords: co‐condensation synthesis, surface chemical modification, plasmid DNA condensation, plasmid DNA transfection, chemical modified mesoporous silica nanoparticles, chemical stability, thermal stability, adjustable morphology, porosity, MCM‐41 MSN functionalisation, imidazole groups, MCM‐41‐OH, primary amine functionalised MSN, gene delivery, HeLa cell transfection, GFP expression, DNase1 protection, endosomal escape properties, carboxyfluorescein tracer, SiO2   相似文献   

19.
Acute lymphoblastic leukemia (ALL) is the white blood cell cancer in children. L‐asparaginase (L‐ASNase) is one of the first drugs used in ALL treatment. Anti‐tumor activity of L‐ASNase is not specific and indicates limited stability in different biological environments, in addition to its quick clearance from blood. The purpose of the present study was to achieve a new L‐ASNase polymer bioconjugate to improve pharmacokinetic, increase half‐life and stability of the enzyme. The conjugations were achieved by the cross‐linking agent of 1‐ethyl‐3‐(3‐ dimethylaminopropyl) carbodiimide (EDC) which activates the carboxylic acid groups of polymeric nanoparticles to create amide bond. EDC conjugated the L‐ASNase to two biodegradable polymers including; Ecoflex® and poly (styrene‐co‐maleic acid) (PSMA) nanoparticles. To achieve optimal L‐ASNase nanoparticles the amounts of each polymer and the crosslinker were optimized and the nanoparticles were characterized according to their particle size, zeta potential and percent of conjugation of the enzyme. The results showed that conjugated enzyme had more stability against pH changes and proteolysis. It had lower Km value (indicating more affinity to the substrate) and greater half‐life in plasma and phosphate buffered saline, in comparison to native enzyme. Generally, the conjugated enzyme to PSMA nanoparticles showed greater results than Ecoflex® nanoparticles.Inspec keywords: enzymes, polymer blends, nanomedicine, biomedical materials, blood, nanoparticles, cancer, molecular biophysics, molecular configurations, biochemistry, conducting polymers, electrokinetic effects, particle size, bonds (chemical), biodegradable materials, pHOther keywords: enhanced stability, L‐asparaginase, bioconjugation, poly(styrene‐co‐maleic acid), Ecoflex nanoparticles, acute lymphoblastic leukaemia, white blood cell cancer, children, drugs, ALL treatment, antitumour activity, biological environments, L‐ASNase polymer bioconjugate, pharmacokinetic, enzyme, crosslinking agent, amide bond, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide, carboxylic acid groups, polymeric nanoparticles, EDC conjugation, biodegradable polymers, PSMA nanoparticles, optimal L‐ASNase nanoparticles, particle size, zeta potential, pH changes, proteolysis, native enzyme, conjugated enzyme  相似文献   

20.
Breast cancer is the second cause of death in the world. Ionising radiation is a potent mutagen that can cause DNA damage, chromosomes breakage, and cell death. In the present study, radiotherapy and nanoparticle‐antibodies (ABs) have been combined to enhance the efficacy of cancer cell treatment. Silver nanoparticles (SNP) were synthesised, coated with anti‐HER2, and then characterised with different techniques such as X‐ray diffraction, dynamic light scattering, transmission electron microscopy, Fourier transform infrared, and UV–Vis spectroscopy. SKBR3 cells were irradiated with cobalt‐60 in the presence of nanoparticle‐AB as the drug. Cell viability was measured using the diphenyltetrazolium bromide assay, and the cellular status was assessed by Raman spectroscopy. Irradiation considerably decreased cell viability proportionate to the dose increase and post‐irradiation time. The surface‐enhanced Raman spectroscopy increased the signal in the presence of SNP. Increasing the dose to 2 Gy increased the irradiation resistance, and higher dose increases (4 and 6 Gy) enhanced the irradiation sensitivity. Moreover, the cellular changes induced by irradiation in the presence of the drug were stable after 48 h. The authors results introduced the combination of the drug with radiation as an effective treatment for cancer and Raman spectroscopy as a suitable tool to diagnose effective irradiation doses.Inspec keywords: ultraviolet spectra, X‐ray diffraction, tumours, nanofabrication, silver, cellular biophysics, nanomedicine, cancer, drugs, DNA, light scattering, toxicology, biomagnetism, radiation therapy, Raman spectra, transmission electron microscopy, infrared spectra, nanoparticles, gynaecologyOther keywords: higher dose increases, irradiation sensitivity, drug, effective treatment, effective irradiation doses, silver nanoparticles, irradiation efficiency, SKBR3 breast cancer cells, ionising radiation, potent mutagen, DNA damage, cell death, nanoparticle‐antibodies, cancer cell treatment, SNP, different techniques, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, UV–Vis spectroscopy, SKBR3 cells, nanoparticle‐AB, diphenyltetrazolium bromide assay, cell viability proportionate, dose increase, post‐irradiation time, surface‐enhanced Raman spectroscopy, irradiation resistance, time 48.0 hour, size 60.0 inch, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号