首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
超级电容器具有大充放电速率、良好的循环稳定性及高功率密度等优点, 是一种新兴的绿色环保储能器件。采用简单的水热合成法制备镍铝层状双金属氢氧化物(NiAl-LDHs) 超级电容器电极材料, 探究不同镍铝比对其形貌组成及电化学性能的影响。所制备的Ni1Al1-LDHs 电极材料在电流密度为1 A/g 时表现出378 F/g 的高比电容。以活性炭(AC) 为负极组成的Ni1Al1-LDHs//AC 非对称超级电容器在能量密度为27.5 Wh/kg 时, 具有1.4 kW/kg 的高功率密度, 表现出优异的电化学性能。  相似文献   

2.
采用化学氧化聚合法以不同浓度的苯胺单体制备聚苯胺(PANI-1和PANI-2),采用相同方法在氮掺杂碳纳米管(NCNTs)悬浮液中制备聚苯胺/氮掺杂碳纳米管复合材料(PANI/NCNTs-1和PANI/NCNTs-2)。利用循环伏安法、恒电流充放电和电化学交流阻抗技术对合成材料的超级电容器性能进行研究分析。在0.2 A/g电流密度下进行恒电流充放电, PANI/NCNTs-1和PANI/NCNTs-2复合材料可以获得较高的比电容。同时, PANI/NCNTs复合材料也具有优异的倍率性能和充放电稳定性,这都表明该复合材料在电化学储能器件领域具有广阔的应用前景。  相似文献   

3.
为研究不同电极材料的复合对其电容性能的改善作用,文中在以氯化镍和硒粉为原料制备硒化镍(NiSe)纳米颗粒上原位聚合生长聚苯胺(PANI),形成聚苯胺包覆硒化镍的聚苯胺/硒化镍(PANI/NiSe_2)纳米复合材料。通过扫描电子显微镜、透射电子显微镜、紫外可见光光谱分析等对复合材料进行形貌表征。结果表明:包覆后的NiSe_2纳米颗粒尺寸明显增加;紫外可见光光谱显示PANI和NiSe_2之间产生了电子相互作用,使复合材料的吸收峰向长波方向移动;与纯PANI和NiSe相比,复合材料的热稳定性得到提高。利用电化学工作站和高性能电池检测系统测试了电极的电化学性能。在0.5 A·g~(-1)的电流密度下,PANI/NiSe_2复合材料的比电容可以达到142.5 F·g~(-1),是PANI(74.4 F·g~(-1))和NiSe_2(69.4 F·g~(-1))的近两倍;循环1 000次以后,比电容保持率为89.8%,表现出良好的电化学性能。与纯PANI和NiSe相比,文中制备的复合材料具有更高的电化学比表面积和电导率,这是其电容性能提升的重要原因。  相似文献   

4.
聚吡咯制备简便、电导率可控,且比电容高、稳定性好、易于跟其他材料复合,是导电聚合物中一种颇具前景的超级电容器的电极材料.结合二氧化锰成本低、比表面积大、可逆性高、电化学性能稳定、环境友好等优点,采用一步法成功制备了聚吡咯/二氧化锰纳米复合材料.通过傅里叶红外光谱、X射线衍射、扫描电子显微镜、X射线能量色散谱等测试,对聚吡咯/二氧化锰复合材料的结构和形貌进行表征;并且通过循环伏安法和计时电位法对其进行电化学性能测试.结果表明在电流密度为1A/g时,所合成的聚吡咯/二氧化锰复合材料的电容比聚吡咯大几十倍,达到559F/g,并且保持率达到98.64%,表明聚吡咯/二氧化锰复合材料具有优良的电化学性、良好的可逆性和优秀的稳定性,与其他同类超级电容器电极材料对比具有一定的优势.  相似文献   

5.
为提高超级电容器的电化学性能,利用木屑在氮气气氛下碳化后制得具有碳微米管结构的生物碳,进而采用电沉积法在生物碳上沉积二氧化锰.中空多孔的碳结构具有更多的活性点位和离子传输途径,为离子的存储和运输提供了便利.所制备的MnO2/C复合材料用作超级电容器电极,在1 A/g的电流密度下,比电容达到800.3 F/g,该MnO2/C复合电极是一种优异的电极材料,在电化学储能领域具有良好的应用前景.  相似文献   

6.
通过电解剥落得到的表面石墨烯化的石墨电极(graphene layers/graphite plate, GL/GP)为基底,在硫酸介质中以苯胺为单体,采用循环伏安法(cyclic voltammetry, CV)制备了表面石墨烯化的石墨/聚苯胺(graphene layers/graphite plate/polyaniline, GL/GP/PANI)电极,并探究聚合圈数对GL/GP/PANI电极比电容的影响。利用场发射扫描电镜(scanning electron microscope, SEM)对电极材料的形貌进行表征。在0.5 M H2SO4电解液中,对合成的电极材料进行循环伏安、恒电流充放电(chronopotentiometry, CP)和电化学稳定性测试。结果表明,在表面石墨烯化的石墨电极上合成的PANI具有棒状结构,电流密度为0.085 mA/cm2时, GL/GP/PANI电容器的比电容可达1 042.8 F/g。提供了一种新的超级电容材料基底电极的构建方式。  相似文献   

7.
以RuCl3.nH2O为原料通过溶胶-水热法制得纳米RuO2粒子,然后在RuO2溶胶体系中通过常规的化学氧化法由苯胺氧化聚合制备纳米RuO2/聚苯胺复合材料,采用扫描电镜(SEM)和X-射线衍射(XRD)对其形貌和微观结构进行表征,并用循环伏安法研究了不同RuO2质量分数的复合材料电极的电化学性能。结果表明,RuO2质量分数为5%时,RuO2/聚苯胺复合材料形成致密的表面包覆型结构,聚苯胺电化学电容消失,复合材料电极电容很小。RuO2质量分数大于或小于5%时,RuO2粒子呈弥散状分布在聚苯胺中;RuO2质量分数为3%时,复合材料比电容达到极值374.6 F/g,这种复合材料具有很好的电化学特性,适于用作超级电容器电极。  相似文献   

8.
为了最大程度上保留石墨烯的晶格结构以提高其电导并简化过渡金属氧化物与石墨烯复合物的制备过程,通过氢电弧放电和简易的高温处理成功制备得到四氧化三锰/石墨烯纳米复合材料,并将其用作超级电容器的电极.通过XRD、Raman光谱和TEM对产物的形貌、结构及成分进行了表征.电化学测试结果表明,由该材料制得的超级电容器具有良好的电容性质、出色的电化学稳定性(循环3 000圈后大约保持96%)以及较低的等效串联电阻.同时,四氧化三锰的掺入可使其比电容提高到纯石墨烯电极的3倍.因此,此方法为制备以新型石墨烯复合过渡金属氧化物作为高性能超级电容器电极的研究提供了新思路.  相似文献   

9.
采用高能球磨法制备了Al/MnO2超级电容器电极材料;运用X射线衍射和扫描电镜对Al/MnO2进行了物相分析和形貌观察。结果表明,所得球磨粉体为纯MnO2物相,Al的加入未明显改变MnO2衍射图样。以Al/MnO2为超级电容器电极材料进行电化学性能测试,不同含量配比的Al/MnO2电极材料的比电容在初始几个电化学循环中均有明显下降,但其比电容均大于未添加Al的MnO2电极;Al添加量为Al0.05/Mn0.95O2时,电极的电化学性能最好。Al/MnO2电极材料电化学性能提高的原因可能是由于Al的加入改善了Al/MnO2电极体系的导电性能,从而有利于电极氧化还原反应的进行。  相似文献   

10.
采用化学法在氧化石墨烯(GO)表面垂直生长出聚苯胺(PANI)纳米线阵列。利用SEM、FT-IR、Raman对所制备的GO/PANI复合材料的形貌及结构进行表征。该复合材料的电化学电容性能通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电进行表征。研究结果表明:在0.2A/g的电流密度下,GO/PANI电极首次充放电比电容可高达469F/g,高于纯PANI电极的452F/g,复合材料的电荷传递电阻为1Ω·cm2。同时,GO/PANI的循环稳定性及倍率特性得到极大的增强。  相似文献   

11.
1 INTRODUCTIONRecently , surpercapacitor has attracted greatattention for its unique power performance[1 ,2],while electrode materials ,as one key factor to de-termine the performance of supercapacitor , nowbecome the focus of many researches . The super-capacitor materials can be categorized into threetypes :carbon electrode materials[3], metal oxide e-lectrode materials[4]and conductive polymer elec-trode materials[5].Conductive polymer electrode materials havehigher capacitance than tha…  相似文献   

12.
利用电化学沉积法在铝箔上制备了掺杂导电碳的磷酸铁锂与碳复合的正极材料.通过对比磷酸铁锂市售样品、电化学沉积法制得的样品、电镀液询问沉淀样品这3种样品的物理表面形貌、电化学性能曲线,组装电池后的循环充放电性能曲线,研究了电化学沉积法掺碳对于磷酸铁锂正极材料结构和电化学性能的影响,得出了电化学沉积法制备LiFePO_4/C复合材料的可行性.  相似文献   

13.
Fan  MouPing  Chen  YuanMao  Ke  Xi  Huang  ZeXi  Chen  YouChen  Wu  WenLi  Qu  XiaoFeng  Shi  ZhiCong  Guo  ZaiPing 《中国科学:技术科学(英文版)》2022,65(1):231-237

The NiS2 nanosheet array on Ni foil (NiS2/NF) was prepared using an in situ growth strategy and sulfidation method and was used as the cathode of lithium sulfur battery. The unique nanostructure of the NiS2 nanosheet array can provide abundant active sites for the adsorption and chemical action of polysulfides. Compared with the sulfur powder coated pure NF (pure NF-S) for lithium sulfur battery, the sulfur powder coated NiS2/NF (NiS2/NF-S) electrode exhibits superior electrochemical performance. Specifically, the NiS2/NF-S delivered a high reversible capacity of 1007.5 mAh g−1 at a current density of 0.1 C (1 C= 1675 mA g−1) and kept 74.5% of the initial capacity at 1.0 C after 200 cycles, indicating the great promise of NiS2/NF-S as the cathode of lithium sulfur battery. In addition, the NiS2/NF-S electrode also showed satisfactory electrochemical performance when used as the cathode for sodium sulfur battery.

  相似文献   

14.
为了研发比容量高和循环性能稳定的电化学储锂电极材料,用二甲基咪唑钴(ZIF-67)作为Co源前驱体,通过一步水热法制备Z-CoS2-MoS2/rGO(还原氧化石墨烯)复合材料,研究微观结构和电化学储锂性能. 结果表明,与采用CoCl2作为钴源制得的CoS2-MoS2/rGO相比,Z-CoS2-MoS2/rGO复合材料中CoS2粒子有着更加细小和较均匀的粒径,很好地分散在MoS2和rGO表面,形成了相应的异质结构. 作为电化学储锂电极材料,Z-CoS2-MoS2/rGO的可逆比容量可以达到1 092 mA·h/g,经900次循环后在500 mA/g电流密度下保持了941 mA·h/g的储锂可逆比容量,显示了稳定的充放电循环性能. Z-CoS2-MoS2/rGO优异的电化学储锂性能主要归因于该双金属硫化物复合材料具有较多的电化学储锂电极反应电对以及复合材料中CoS2纳米颗粒、MoS2纳米片和rGO之间均匀的复合及所形成的异质结构.  相似文献   

15.
废旧锂电池的回收及再利用技术是电子废弃物资源化领域的研究热点之一。废旧锂离子电池回收过程中最主要的部分是回收锂电池内有价金属离子,目前主要采用的技术为湿法冶金技术。根据废旧锂电池的结构、组成及回收工艺特点,分析比较了多种回收工艺的优缺点,讨论了国内外锂电池回收技术的发展方向,为废旧锂离子电池回收工艺优化提供了有价值的参考。  相似文献   

16.
以低成本的无尘纸为基底吸附氧化石墨烯,再通过水热处理得到还原氧化石墨烯,最后将苯胺原位聚合到无尘纸@还原氧化石墨烯上,制备得到无尘纸@还原氧化石墨烯/聚苯胺复合材料。运用循环伏安法、恒电流充放电法、阻抗法等测试该复合材料的电化学性能。结果表明,与无尘纸@还原氧化石墨烯相比,无尘纸@还原氧化石墨烯/聚苯胺复合材料的电化学性能有显著提高,在扫描速率为20 mV/s时,比电容达到280 F/g。基于无尘纸@还原氧化石墨烯/聚苯胺复合材料组装的电容器有良好的柔性,充电后可点亮白色LED灯。因此,具有柔性与电容性能的无尘纸@还原氧化石墨烯/聚苯胺复合材料能用于超级电容器领域。  相似文献   

17.
采用化学氧化原位聚合法制备聚苯胺纳米棒(PANI)、PANI和氮掺杂碳纳米纤维(NCNFs)的复合材料(PANI/NCNFs)。扫描电镜(SEM)结果表明, PANI纳米棒均匀生长在NCNFs的表面,制备的复合材料直径约为150~200 nm。恒流充放电结果表明,当放电电流密度为0.2 A/g时, PANI/NCNFs-1、PANI/NCNFs-2和PANI/NCNFs-3(苯胺浓度分别为0.256、0.337、0.160 mol/L制备)可以获得877、693和563 F/g的比电容。PANI/NCNFs复合材料具有优异的比电容和倍率性能,该材料在电化学储能器件领域具有广阔的应用前景。  相似文献   

18.
为了提高氧化锡(SnO2)电极的电化学性能,采用牺牲模板法和水热法相结合,制备了C@SnO2复合电极材料。结果表明水热反应过程中生成的SnO2纳米颗粒负载在泡沫碳的骨架上,或存在于泡囊中。C@SnO2电极在0.1 A/g的电流密度下循环100圈后比容量超过660 mAh/g。在1.6 A/g的大电流密度下充放电时,电池的比容量达到较高水平(≥310 mAh/g)。这种优异的电化学性能归因于SnO2纳米颗粒的纳米特性和泡沫碳的特殊结构,可以改善电子传导性,并适应脱嵌锂过程中SnO2的体积变化。与纯SnO2电极相比,C@SnO2复合电极的比容量显著提升,稳定性也得到了增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号