首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the temperature stability of piezoelectric properties of Na0.5K0.5NbO3 (KNN)-based ceramics, Bi(Mg2/3Nb1/3)O3 (BMN) was used to modify Na0.5K0.5NbO3 (KNN)-based ceramics by a conventional sintering technique. Piezoelectric and ferroelectric properties of 0.99K0.5Na0.5NbO3-0.01Bi(Mg2/3Nb1/3)O3 ceramics were studied. It is found that 0.01BMN-0.99KNN ceramics exhibits stable piezoelectric properties as the temperature changes due to the composition fluctuation on B sites (d33 ≈ 130 pC/N, dielectric loss tg θ ≤ 5% in the range 25-300 °C). These results indicate that these materials are promising lead-free piezoelectric ceramic candidates for practical applications.  相似文献   

2.
The sintering temperature of 0.75Pb(Zr0.47Ti0.53)O3-0.25Pb(Zn1/3Nb2/3)O3 ceramics containing 1.5 mol% MnO2 was decreased from 930 to 850 °C with the addition of CuO. The CuO reacted with the PbO and formed a liquid phase during the sintering, which assisted the densification of the specimens. Most of the Cu2+ ions existed in the CuO second phase, thereby preventing any possible hardening effect from the Cu2+ ions. Variations of the kp, Qm, ?3T/?0 and d33 values with CuO were similar to that of the relative density. The specimen containing 0.5 mol% CuO sintered at 850 °C showed the good piezoelectric properties of kp = 0.5, Qm = 1000, ?3T/?0 = 1750 and d33 = 300 pC/N.  相似文献   

3.
Polycrystalline samples of BaFe0.5Nb0.5O3 and (1 − x)Ba(Fe0.5Nb0.5)O3-xSrTiO3 [referred as BFN and BFN-ST respectively] (x = 0.00, 0.15 and 0.20) have been synthesized by a high-temperature solid-state reaction technique. The XRD patterns of the BFN and BFN-ST at room temperature show a monoclinic phase. The microstructure of the ceramics was examined by the scanning electron microscopy (SEM) and shows the polycrystalline nature of the samples with different grain sizes, which are inhomogeneously distributed through the sample surface. Detailed studies of dielectric and impedance properties of the materials in a wide range of frequency (100 Hz-5 MHz) and temperatures (30-270 °C) showed that properties are strongly temperature and frequency dependent. Complex Argand plane plot of ?″ against ?′, usually called Cole-Cole plots is used to check the polydispersive nature of relaxation phenomena in above mentioned compounds. Relaxation phenomena of non-Debye type have been observed in the BFN and BFN-ST ceramics, as confirmed by the Cole-Cole plots.  相似文献   

4.
Plate-like NaNbO3 (NN) particles were used as the raw material to fabricate (1 − x)[0.93 K0.48Na0.52Nb O3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 lead-free piezoelectric ceramics using a conventional ceramic process. The effects of NN on the crystal structure and piezoelectric properties of the ceramics were investigated. The results of X-ray diffraction suggest that the perovskite phase coexists with the K3Li2Nb5O15 phase, and the tilting of the oxygen octahedron is probably responsible for the evolution of the tungsten-bronze-typed K3Li2Nb5O15 phase. The Curie temperature (TC) is shifted to lower temperature with increasing NN content. (1 − x)[0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3]-xNaNbO3 ceramics show obvious dielectric relaxor characteristics for x > 0.03, and the relaxor behavior of ceramics is strengthened by increasing NN content. Both the electromechanical coupling factor (kp) and the piezoelectric constant (d33) decrease with increasing amounts of NN. 0.01-0.03 mol of plate-like NaNbO3 in 0.93 K0.48Na0.52NbO3-0.07Li(Ta0.5Nb0.5)O3 gives the optimum content for preparing textured ceramics by the RTGG method.  相似文献   

5.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

6.
Fine-grained Pb(Zr0.53Ti0.47)O3-(Ni0.5Zn0.5)Fe2O4 (PZT-NZFO) magnetoelectric (ME) composite ceramics were fabricated by a modified hybrid process at a low sintering temperature of 900 °C. Well-controlled crystallized grain size and homogeneous microstructure with a good mixture of two phases were observed in the ceramics. The ceramics show coexistence of ferrimagnetic and ferroelectric phases with well-formed ferromagnetic and ferroelectric hysteresis loops at room temperature. A significant ME effect was observed with a ME coefficient of 0.537 V cm−1 Oe−1 in the vicinity of electromechanical resonance. In addition, high capacitance can be obtained at low frequency, and magnetic properties in the ceramics can be tailored by the grain size of the ferromagnetic particles in a simple and flexible way.  相似文献   

7.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

8.
Ba(Zn1/3Ta2/3)O3 (BZT) dielectric resonators were prepared by solid-state reaction. The starting materials were BaCO3, ZnO, and Ta2O5 powders with high purity. The double calcined BZT pellets were sintered in air at temperatures of 1575, 1600, 1625, and 1650 °C for 4 h. The X-ray diffraction data allowed the study of the unit cell distortion degree and the presence of the secondary phases. A long-range order with a 2:1 ratio of Ta and Zn cations on the octahedral positions of the perovskite structure was observed with the increase of the sintering temperature. The dielectric constant of BZT resonators measured around 6 GHz was between 26 and 28. High values of Q × f product (120 THz) were obtained for BZT resonators sintered at 1650 °C/4 h. The temperature coefficient of the resonance frequency exhibits positive values less than 6 ppm/°C. The achieved dielectric parameters recommend BZT dielectric resonators for microwave and millimeter wave applications.  相似文献   

9.
Ceramic samples of xBi(Al0.5Fe0.5)O3-(1 − x)PbTiO3 (BAF-PT, x = 0.05-0.5) solid solutions were fabricated using the conventional solid state reaction method. X-ray diffraction analysis revealed that all compositions can form single perovskite phase with tetragonal symmetry. The relationship between the tetragonal lattice parameters, tetragonality c/a, cell volume, and ferro-piezoelectric characterization as a function of x was systematically investigated. The BAF modification can effectively improve the poling condition at a proper BAF content. A combination of piezoelectric constant of d33 (50-60 pC/N), electromechanical planar coupling coefficients of kp (20.3-22.5%), and high Curie temperature Tc (>478 °C) suggested that BAF-PT could be a good candidate for high-temperature piezoelectric applications.  相似文献   

10.
Sb5+-doped (NaBi)0.38(LiCe)0.05[]0.14Bi2Nb2O9 (represented as NBNLCS-x, where [] represents A-site vacancies) ceramics were prepared by the conventional solid-state route. The ceramics well sintered to approach ∼98.5% theoretical density and the tetragonality of crystal structure increased with Sb5+ additions. However, the Curie temperature (TC) and the piezoelectric coefficient (d33) of Sb5+-modified ceramics gradually decreased. The 3 mol% Sb5+-doped samples exhibited optimum properties with a d33 value of ∼22 pC/N planar electromechanical coupling factor (kp) of ∼11.2% and relatively high TC of ∼765 °C. These results indicate that NBNLCS-x material is a promising candidate for high-temperature piezoelectric applications.  相似文献   

11.
Ba(Zn1/3Nb2/3)O3 nanoparticles have been synthesized by a polymerised complex method by using precursor materials of barium nitrate, zinc acetate, niobium oxide, hydrofluoric acid and citric acid. Thermal decomposition characteristics and crystallization behavior of the powders were investigated by the thermogravimetric and differential thermal analysis, X-ray diffractometer and Fourier transform infrared spectroscopy. Ba(Zn1/3Nb2/3)O3 phase started to form at low temperature of 400 °C and, single phase Ba(Zn1/3Nb2/3)O3 perovskite structure was obtained at 1000 °C. Microstructural investigation revealed that the major particle size of Ba(Zn1/3Nb2/3)O3 nanoparticles were in the range of 80–110 nm with spherical morphology and homogeneous size distribution. But the powders also contained some agglomeration.  相似文献   

12.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

13.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

14.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

15.
The crystal structure and the dielectric properties of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 ceramics have been investigated. Ca0.8Sm0.4/3TiO3 was employed as a τf compensator and was added to La(Mg0.5Ti0.5)O3 to achieve a temperature-stable material. The formation of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 solid solutions were confirmed by the XRD results and the measured lattice parameters for all compositions. The dielectric properties are strongly correlated to the sintering temperature and the compositional ratio of the specimens. Although the ?r of the specimen could be boosted by increasing the amount of Ca0.8Sm0.4/3TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled by the existing phases. A new microwave dielectric material 0.45La(Mg0.5Ti0.5)O3-0.55Ca0.8Sm0.4/3TiO3, possessing a fine combination of microwave dielectric properties with an ?r of 47.83, a Q × f of 26,500 GHz (at 6.2 GHz) and a τf of −1.7 ppm/°C, is proposed as a very promising candidate material for today's 3G applications.  相似文献   

16.
We present here the results of comprehensive X-ray diffraction and dielectric studies on several compositions of (1 − x)[Pb(Mg0.5W0.5)O3]-xPbTiO3 (PMW-xPT) solid solution across the morphotropic phase boundary. Rietveld analysis of the powder X-ray diffraction data reveals cubic (space group Fm3m) structure of PMW-xPT ceramics for the compositions with x ≤ 0.42, tetragonal (space group P4mm) structure for the compositions with x ≥ 0.72 and coexistence of the tetragonal and cubic phases for the intermediate compositions (0.46 ≤ x ≤ 0.68). Temperature dependence of the dielectric permittivity above room temperature exhibits diffuse nature of phase transitions for the compositions in the cubic and two phase region while the compositions with tetragonal structure at room temperature exhibit sharp ferroelectric to paraelectric phase transition. The PMW-xPT compositions with coexistence of tetragonal and cubic phases at room temperature exhibit two anomalies in the temperature dependence of the dielectric permittivity above room temperature. Using results of structural and dielectric studies a partial phase diagram of PMW-xPT ceramics is also presented.  相似文献   

17.
The phase transition behavior and its effect on thermal stability of the piezoelectric properties of the (1 − x)[0.65PbMg1/3Nb2/3O3-0.35PbTiO3]-xBiZn1/2Ti1/2O3 ceramics with 0 ≤ x ≤ 0.06 were investigated. The phase transition from the monoclinic to tetragonal phase was determined by the dielectric constant and elastic constant measurements. The temperature independent piezoelectric response with −d31 = 188 pC/N was obtained from 175 to 337 K for the composition with x = 0.02. The enhanced thermal stability of piezoelectric response was achieved by shifting the monoclinic-tetragonal phase transition to the lower temperature.  相似文献   

18.
Composite ceramics in the solid solution of Zrx(Zn1/3Nb2/3)1−xTiO4 (x = 0.1-0.4) have been prepared by the mixed oxide route. Formation of solid solution was confirmed by the X-ray diffraction patterns. The microwave dielectric properties, such as dielectric constant (?r), Q × f value and temperature coefficient of resonant frequency (τf) have been investigated as a function of composition and sintering temperature. With x increasing from 0.1 to 0.4, the dielectric constant decreases from 70.9 to 43.2, and the τf decreases from 105 to 55 ppm/°C. The Q × f value, however, increases with increasing x value to a maximum 26,600 GHz (at 6 GHz) at x = 0.3, and then decreases thereafter. For low-loss microwave applications, a new microwave dielectric material Zr0.3(Zn1/3Nb2/3)0.7TiO4, possessing a fine combination of microwave dielectric properties with a high ?r of 51, a high Q × f of 26,600 GHz (at 6 GHz) and a τf of 70 ppm/°C, is suggested.  相似文献   

19.
The effect of H3BO3-CuO-Li2CO3 combined additives on the sintering temperature, microstructure and microwave dielectric properties of (Ca0.61Nd0.26) (Ti0.98Sn0.02)O3 (CNTS) ceramics was investigated. The H3BO3-CuO-Li2CO3 combined additives lowered the sintering temperature of CNTS ceramics effectively from 1300 to 950 °C. This may be due to the interim liquid-phase of Li2O-CuO-B2O3, which were formed in the sintering process. (Li0.5Nd0.5)TiO3 (LNT) demonstrated an effective compensation in τf value of the low-fired CNTS ceramics. The 0.4CNTS-0.6LNT ceramics with 5 wt% (H3BO3-CuO)-0.5 wt% Li2CO3 sintered at 900 °C for 2 h shows excellent dielectric properties: ?r = 90.6, Q × f = 3400 GHz, and τf = 9 ppm/°C. Also, the LTCC material is compatible with Ag electrode.  相似文献   

20.
Piezoelectric (K0.5Na0.5)NbO3 (KNN) and (K0.5Na0.5)(Nb0.7Ta0.3)O3 (KNNT) thin films were prepared via chemical solution deposition. An analysis of X-ray diffraction revealed that Ta5+ diffuses into the KNN to form a single perovskite structure. Compared to KNN films, KNNT films exhibited a low leakage current density due to their fine-grain nonporous structures. The partial substitution of Ta5+ for the B-site ion Nb5+ in the KNNT films decreased the Curie temperature (TC). This in turn led to the existence of a polymorphic phase transition near room temperature and further improvement in the piezoelectric properties. Lead-free KNNT films exhibited a well-saturated piezoelectric hysteresis loop with a effective piezoelectric coefficient (d33,eff) value of 61 pm/V, comparable to that of PZT thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号