首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s --> pi* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the "high-density" probe surface than on the "high-efficiency" probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface.  相似文献   

2.
Lee HJ  Li Y  Wark AW  Corn RM 《Analytical chemistry》2005,77(16):5096-5100
This paper describes a novel approach utilizing the enzyme exonuclease III in conjunction with 3'-terminated DNA microarrays for the amplified detection of single-stranded DNA (ssDNA) with surface plasmon resonance (SPR) imaging. When ExoIII and target DNA are simultaneously introduced to a 3'-terminated ssDNA microarray, hybridization adsorption of the target ssDNA leads to the direction-dependent ExoIII hydrolysis of probe ssDNA strands and the release of the intact target ssDNA back into the solution. Readsorption of the target ssDNA to another probe creates a repeated hydrolysis process that results over time in a significant negative change in SPR imaging signal. Experiments are presented that demonstrate the direction-dependent surface enzyme reaction of ExoIII with double-stranded DNA as well as this new enzymatically amplified SPR imaging process with a 16-mer target ssDNA detection limit of 10-100 pM. This is a 10(2)-10(3) improvement on previously reported measurements of SPR imaging detection of ssDNA based solely on hybridization adsorption without enzymatic amplification.  相似文献   

3.
Wang X  Ozkan CS 《Nano letters》2008,8(2):398-404
We describe a novel application for detecting specific single strand DNA sequences using multisegment nanowires via a straightforward surface functionalization method. Nanowires comprising CdTe-Au-CdTe segments are fabricated using electrochemical deposition, and electrical characterization indicates a p-type behavior for the multisegment nanostructures, in a back-to-back Schottky diode configuration. Such nanostructures modified with thiol-terminated probe DNA fragments could function as high fidelity sensors for biomolecules at very low concentration. The gold segment is utilized for functionalization and binding of single strand DNA (ssDNA) fragments while the CdTe segments at both ends serve to modulate the equilibrium Fermi level of the heterojunction device upon hybridization of the complementary DNA fragments (cDNA) to the ssDNA over the Au segment. Employing such multisegment nanowires could lead to the fabrication more sophisticated and high multispecificity biosensors via selective functionalization of individual segments for biowarfare sensing and medical diagnostics applications.  相似文献   

4.
Tan YN  Lee KH  Su X 《Analytical chemistry》2011,83(11):4251-4257
We have developed a label-free homogeneous phase bioassay to characterize the DNA binding properties of single-stranded DNA binding (SSB) protein, a key protein involved in various DNA processes such as DNA replication and repair. This assay uses gold nanoparticles (AuNPs) as sensing probe and is based on the phenomenon that preformed SSB-single-stranded DNA (ssDNA) complexes can protect AuNPs against salt-induced aggregation better than SSB or ssDNA alone. With the controlled particle aggregation/dispersion as measure, this assay can be used to detect the formation of SSB complexes with ssDNA of different length and nucleotide composition and to assess their binding properties without tedious and complicated assay procedures. On the basis of the inverse relationship between DNA hybridization efficiency and the tendency of SSB to form protection complex with unhybridized ssDNA to AuNPs, this assay is further developed to detect DNA hybridization with single nucleotide polymorphism selectivity. Owing to the high affinity between SSB and dissociated ssDNA, single-base mismatch discrimination in a long sequence of 30-mer DNA was achieved for both the end- and center-base mismatch. Unlike the conventional techniques for DNA and protein analysis, current AuNPs-based sensing strategy is simple in design, fast in detection, and economical for operation without the need of sophisticated equipment.  相似文献   

5.
Boozer C  Ladd J  Chen S  Yu Q  Homola J  Jiang S 《Analytical chemistry》2004,76(23):6967-6972
A stable and versatile biosensor surface is prepared by site-directed immobilization of protein-DNA conjugates onto a mixed self-assembled monolayer (SAM) composed of ssDNA thiols and oligo(ethylene glycol) (OEG) terminated thiols. The protein conjugates consist of an antibody chemically linked to a ssDNA target with a sequence complementary to the surface-bound ssDNA probes and are immobilized on the surface via sequence-specific hybridization. Compared to standard antibody immobilization techniques, this approach offers many advantages. The exceptional specificity of DNA hybridization combined with the diversity of potential sequences makes this platform perfect for multichannel sensors. Once a surface is patterned with the appropriate probe sequences, sequence-specific hybridization will sort out the target conjugates and direct them to the appropriate spots on the surface. In addition, the DNA SAMs are very stable and well suited to recycling by dehybdridization of the conjugates from the surface-bound probes. In this work, we demonstrate the specificity, sensitivity, and convenience of using protein-DNA conjugates to convert a DNA/OEG SAM surface into a biosensor surface and apply this platform to the detection of human chorionic gonadotropin using surface plasmon resonance.  相似文献   

6.
Improving the detection of DNA hybridization is a critical issue for several challenging applications encountered in microarray and biosensor domains. Herein, it is demonstrated that hybridization between complementary single‐stranded DNA (ssDNA) molecules loosely adsorbed on a mica surface can be achieved thanks to fine‐tuning of the composition of the hybridization buffer. Single‐molecule DNA hybridization occurs in only a few minutes upon encounters of freely diffusing complementary strands on the mica surface. Interestingly, the specific hybridization between complementary ssDNA is not altered in the presence of large amounts of nonrelated DNA. The detection of single‐molecule DNA hybridization events is performed by measuring the contour length of DNA in atomic force microscopy images. Besides the advantage provided by facilitated diffusion, which promotes hybridization between probes and targets on mica, the present approach also allows the detection of single isolated DNA duplexes and thus requires a very low amount of both probe and target molecules.  相似文献   

7.
Piezoelectric-excited, millimeter-sized cantilever (PEMC) sensors having high-mode resonance near 1 MHz are shown to exhibit mass change sensitivity of 1-300 ag/Hz. Gold-coated PEMC sensors immobilized with 15-mer single-stranded DNA (ssDNA) were exposed to 10-mer complementary strands at concentrations of 1 fM, 1 pM, and 1 microM, both separately and sequentially at 0.6 mL/min in a sample flow cell housing the sensor. Decrease in resonance frequency occurred as complementary strands hybridized to the immobilized probe DNA on the sensor surface. Hybridization in three background matrixes--buffer, buffer containing 10,000 times higher noncomplementary strands, and 50% human plasma--were successfully tested. Sensor hybridization responses to 1 fM, 1 pM, and 1 microM complementary strand were nearly the same in magnitude in all three matrixes, but the hybridization rates were different. In each case, the sensor detected the presence of 2 amol of complementary 10-mer strand. The extent of hybridization calculated from resonance frequency change did not decrease in serum. The findings suggest ssDNA can be detected at 2 amol without a sample preparation step and without the use of labeled reagents.  相似文献   

8.
Zhao W  Ali MM  Aguirre SD  Brook MA  Li Y 《Analytical chemistry》2008,80(22):8431-8437
The majority of bioassays utilize thermosensitive reagents (e.g., biomolecules) and laboratory conditions for analysis. The developing world, however, requires inexpensive, simple-to-perform tests that do not require refrigeration or access to highly trained technicians. To address this need, paper-based bioassays using gold nanoparticle (AuNP) colorimetric probes have been developed. In the two prototype DNase I and adenosine-sensing assays, blue (or black)-colored DNA-cross-linked AuNP aggregates were spotted on paper substrates. The addition of target DNase I (or adenosine) solution dissociated the gold aggregates into dispersed AuNPs, which generated an intense red color on paper within one minute. Both hydrophobic and (poly(vinyl alcohol)-coated) hydrophilic paper substrates were suitable for this biosensing platform; by contrast, uncoated hydrophilic paper caused "bleeding" and premature cessation of the assay due to surface drying. The assays are surprisingly thermally stable. During preparation, AuNP aggregate-coated papers can be dried at elevated temperatures (e.g., 90 degrees C) without significant loss of biosensing performance, which suggests the paper substrate protects AuNP aggregate probes from external nonspecific stimuli (e.g., heat). Moreover, the dried AuNP aggregate-coated papers can be stored for at least several weeks without loss of the biosensing function. The combination of paper substrates and AuNP colorimetric probes makes the final products inexpensive, low-volume, portable, disposable, and easy-to-use. We believe this simple, practical bioassay platform will be of interest for use in areas such as disease diagnostics, pathogen detection, and quality monitoring of food and water.  相似文献   

9.
A simple strategy of transgenic sequence-specific detection without a special amplification procedure was developed on the basis of aluminum(III)/poly(l-glutamic acid) (PLGA) film. An aluminum ion (Al(III)) thin film was assembled on the surface of PLGA via the electrostatic binding of Al(III) with carboxyl, namely Al(III)/PLGA. The immobilization of deoxyribonucleic acid (DNA) was carried out on this Al(III)/PLGA film by Al(III)-single strand DNA (ssDNA) interaction. Surface hybridization between the immobilized ssDNA and its complementary ssDNA was monitored by electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as a redox probe. Under the optimal conditions, this DNA electrochemical sensor was applied to determine the specific gene sequence related to phosphinothricin acetyltransferase transgene (PAT) in the transgenic plants by label-free EIS.  相似文献   

10.
Hybridization of complementary single-stranded DNAs (ssDNA) at a water/CCl4 interface was studied on the basis of picosecond total internal reflection fluorescence spectroscopy. Complementary ssDNAs dissolved in water were shown to produce the relevant double-stranded DNA (dsDNA) at a water/CCl4 interface in the presence of octadecylamine (ODA) in the oil phase, while hybridization between ssDNAs did not proceed in the water phase, as demonstrated by the fluorescence dynamics of ethidium bromide as a probe for the DNA structure. The structures of dsDNA and the roles of ODA in hybridization of ssDNA at the interface were discussed.  相似文献   

11.
We describe here a new system involving direct force measurements between biomolecules that could be used in biomedical diagnostics. The method consists in the use of magnetic emulsion droplets bearing immobilized single stranded DNA fragments (ssDNA, Deoxyribo Nucleic Acid). The immobilized ssDNA fragments are able to recognize complementary DNA molecules via specific hydrogen binding (hybridization process). The ssDNA used in this study are 32 bases oligonucleotides functionalized at their 5' extremity with biotin and then immobilized onto the magnetic nanodroplets via interactions with streptavidin previously chemically grafted onto the nanomagnetic support. The aim of this work is to evaluate the possible detection of captured nucleic acid targets via single force measurements as an alternative to classical ELOSA (Enzyme Linked Oligo Sorbent Assay). The obtained results are discussed mainly in terms of electrostatic interactions.  相似文献   

12.
In this letter, we demonstrate a new principle for diagnostics based on DNA sequence detection using single-stranded oligonucleotide tagged magnetic nanobeads. The target DNA is recognized and volume-amplified to large coils by circularization of linear padlock probes through probe hybridization and ligation, followed by rolling circle amplification (RCA). Upon hybridization of the nanobeads in the RCA coils, the complex magnetization spectrum of the beads changes dramatically, induced by the attached volume-amplified target molecules. We show that the magnetization spectrum of the nanobeads can be used for concentration determination of RCA coils down to the pM range, thus creating the opportunity for nonfluorescence-based cost-efficient high-sensitivity diagnostics tool. We also show that the bead incorporation in the coils is diffusion-controlled and consequently may be accelerated by incubating the sample at higher temperatures.  相似文献   

13.
The assay of DNA biosensor-based nucleic acid recognition using microfabrication technology provides for high sensitivity, good surface coverage and reproducibility. We have achieved efficient immobilization and hybridization of nonlabeled DNA using cyclic voltammetry (CV), square wave voltammetry (SWV) and scanning near-field optical microscopy (SNOM) techniques. The increased electrochemical response observed following the immobilization of biotinlyated ssDNA probe suggests that nucleic acid is a somewhat better medium for electronic transfer. We demonstrated the high coverage of immobilized FITC-labeled biotinylated DNA probe on a streptavidin-modified surface using SNOM imaging. SNOM imaging of FITC-labeled complementary DNA also exhibited fluorescent light spots of hybridization distributed throughout. No fluorescent light was observed with the hybridization of non-complementary DNA.  相似文献   

14.
Niu Y  Zhao Y  Fan A 《Analytical chemistry》2011,83(19):7500-7506
A simple, rapid, and sensitive method for visual detection of sequence-specific DNA was developed using hairpin DNA as the recognition element and hydroxylamine-enlarged gold nanoparticles (Au-NPs) as the signal producing component. In the assay, we employed a hairpin DNA probe dually labeled with amine and biotin at the 5'- and 3'-end, respectively. The probe was coupled with reactive N-oxysuccinnimide in a DNA-bind 96-well plate. Without the target DNA, the immobilized hairpin probe was in a "closed" state, which kept the streptavidin-gold off the biotin. The hybridization between the loop sequence and the target broke the short stem duplex upon approaching the target DNA. Consequently, biotin was forced away from the 96-well plate surface and available for conjugation with the streptavidin-gold. The hybridization could be detected visually after the HAuCl(4)-NH(2)OH redox reaction catalyzed by the Au-NPs. Under the optimized conditions, the visual DNA sensor could detect as low as 100 amol of DNA targets with excellent differentiation ability and even a single-base mismatch.  相似文献   

15.
We introduce a new genosensing approach employing CTAB (cetyltrimethylammonium bromide)-coated positively charged colloidal gold nanoparticles (GNPs) to detect target DNA sequences by using absorption spectroscopy and dynamic light scattering. The approach is compared with a previously reported method employing unmodified CTAB-coated gold nanorods (GNRs). Both approaches are based on the observation that whereas the addition of probe and target ssDNA to CTAB-coated particles results in particle aggregation, no aggregation is observed after addition of probe and nontarget DNA sequences. Our goal was to compare the feasibility and sensitivity of both methods. A 21-mer ssDNA from the human immunodeficiency virus type 1 HIV-1 U5 long terminal repeat (LTR) sequence and a 23-mer ssDNA from the Bacillus anthracis cryptic protein and protective antigen precursor (pagA) genes were used as ssDNA models. In the case of GNRs, unexpectedly, the colorimetric test failed with perfect cigar-like particles but could be performed with dumbbell and dog-bone rods. By contrast, our approach with cationic CTAB-coated GNPs is easy to implement and possesses excellent feasibility with retention of comparable sensitivity--a 0.1 nM concentration of target cDNA can be detected with the naked eye and 10 pM by dynamic light scattering (DLS) measurements. The specificity of our method is illustrated by successful DLS detection of one-three base mismatches in cDNA sequences for both DNA models. These results suggest that the cationic GNPs and DLS can be used for genosensing under optimal DNA hybridization conditions without any chemical modifications of the particle surface with ssDNA molecules and signal amplification. Finally, we discuss a more than two-three-order difference in the reported estimations of the detection sensitivity of colorimetric methods (0.1 to 10-100 pM) to show that the existing aggregation models are inconsistent with the detection limits of about 0.1-1 pM DNA and that other explanations should be developed.  相似文献   

16.
This work describes an integrated microfluidic (mu-fl) device that can be used to effect separations that discriminate single-nucleotide polymorphisms (SNP) based on kinetic differences in the lability of perfectly matched (PM) and mismatched (MM) DNA duplexes during alkaline dehybridization. For this purpose a 21-base single-stranded DNA (ssDNA) probe sequence was immobilized on agarose-coated magnetic beads, that in turn can be localized within the channels of a poly(dimethylsiloxane) microfluidic device using an embedded magnetic separator. The PM and MM ssDNA targets were hybridized with the probe to form a mixture of PM and MM DNA duplexes using standard protocols, and the hydroxide ions necessary for mediating the dehybridization were generated electrochemically in situ by performing the oxygen reduction reaction (ORR) using O2 that passively permeates the device at a Pt working electrode (Pt-WE) embedded within the microfluidic channel system. The alkaline DNA dehybridization process was followed using fluorescence microscopy. The results of this study show that the two duplexes exhibit different kinetics of dehybridization, rate profiles that can be manipulated as a function of both the amount of the hydroxide ions generated and the mass-transfer characteristics of their transport within the device. This system is shown to function as a durable platform for effecting hybridization/dehybridization cycles using a nonthermal, electrochemical actuation mechanism, one that may enable new designs for lab-on-a-chip devices used in DNA analysis.  相似文献   

17.
Microfluidic channels fabricated from poly(dimethylsiloxane) (PDMS) are employed in surface plasmon resonance imaging experiments for the detection of DNA and RNA adsorption onto chemically modified gold surfaces. The PDMS microchannels are used to (i) fabricate "1-D" single-stranded DNA (ssDNA) line arrays that are used in SPR imaging experiments of oligonucleotide hybridization adsorption and (ii) create "2-D" DNA hybridization arrays in which a second set of PDMS microchannels are placed perpendicular to a 1-D line array in order to deliver target oligonucleotide solutions. In the 1-D line array experiments, the total sample volume is 500 microL; in the 2-D DNA array experiments, this volume is reduced to 1 microL. As a demonstration of the utility of these microfluidic arrays, a 2-D DNA array is used to detect a 20-fmol sample of in vitro transcribed RNA from the uidA gene of a transgenic Arabidopsis thaliana plant. It is also shown that this array fabrication method can be used for fluorescence measurements on chemically modified gold surfaces.  相似文献   

18.
He W  Huang CZ  Li YF  Xie JP  Yang RG  Zhou PF  Wang J 《Analytical chemistry》2008,80(22):8424-8430
A one-step label-free optical genosensing method has been developed in this contribution by taking short DNA target with its sequence related to the human immunodeficiency virus type 1 (HIV-1) as an example. By employing anisotropic nonspherical and positively charged gold nanorods (Au-NRs) as the recognition platform, which show high stability against aggregation under high ionic strength conditions without any additional stable reagent, we found that the addition of target DNA to the mixture of nonmodified Au-NRs suspension and label-free probe DNA in high ionic strength buffer leads to a color change from red to light purple in less than 5 min, displaying strong plasmon resonance light scattering (PRLS) signals. Mechanism investigations showed that the strong PRLS signals should be ascribed to the aggregation of Au-NRs induced by the formed double-stranded oligonucleotides (dsDNA) from the hybridization of target DNA with probe DNA. With the PRLS signals, we monitored the hybridization process of a 21-mer single-stranded oligonucleotide (ssDNA) from the HIV-1 U5 long terminal repeat (LTR) sequence with its complementary oligonucleotide and detected the effect of single-base-pair mismatches. Two polymerase chain reaction (PCR) amplicon artificial samples derived from Mycobacterium tuberculosis glmS and genes encoding for Bacillus glucanase and an HIV-1 LTR sample isolated from HIV-1-positive blood were detected with satisfactory results, showing that the present method has simplicity, sensitivity, specificity, and reliability for sequence-specific DNA detection related to the HIV gene.  相似文献   

19.
In the present study, we report on the use of 2,4,6-tris (2-pyridyl)-1,3,5-triazine nanobelts (TPTNBs) as an effective fluorescent sensing platform for DNA detection for the first time. The general concept used in this approach is based on adsorption of fluorescently labeled single-stranded DNA (ssDNA) probe by TPTNB, due to the strong pi-pi stacking between unpaired DNA bases and TPTNB. As a result, the fluorophor is brought into close proximity of TPTNB, leading to fluorescence quenching. Upon presence of the target ssDNA, specific hybridization with the target takes place to form a double-stranded DNA (dsDNA). The resultant dsDNA cannot be adsorbed by TPTNB due to its rigid conformation and the absence of unpaired DNA bases. Thus, the fluorophor is seperated from TPTNB accompanied by fluorescence recovery. The present system shows a detection limit as low as 3 nM and has a high selectivity down to single-base mismatch.  相似文献   

20.
Nucleic acid assay from a complex biological milieu is attractive but currently difficult and far from routine. In this study, DNA hybridization from serum dilutions into mixed DNA/mercaptoundecanol (MCU) adlayers on gold was monitored by surface plasmon resonance (SPR). Immobilized DNA probe and hybridized target densities on these surfaces were quantified using 32P-radiometric assays as a function of MCU diluent exposure. SPR surface capture results correlated with radiometric analysis for hybridization performance, demonstrating a maximum DNA hybridization on DNA/MCU mixed adlayers. The maximum target surface capture produced by MCU addition to the DNA probe layer correlates with structural and conformational data on identical mixed DNA/MCU adlayers on gold derived from XPS, NEXAFS, and fluorescence intensity measurements reported in a related study (Lee, C.-Y.; Gong, P.; Harbers, G. M.; Grainger, D. W.; Castner, D. G.; Gamble, L. J. Anal. Chem. 2006, 78, 3316-3325.). MCU addition into the DNA adlayer on gold also improved surface resistance to both nonspecific DNA and serum protein adsorption. Target DNA hybridization from serum dilutions was monitored with SPR on the optimally mixed DNA/MCU adlayers. Both hybridization kinetics and efficiency were strongly affected by nonspecific protein adsorption from a complex milieu even at a minimal serum concentration (e.g., 1%). No target hybridization was detected in SPR assays from serum concentrations above 30%, indicating nonspecific protein adsorption interference of DNA capture and hybridization from complex milieu. Removal of nonsignal proteins from nucleic acid targets prior to assay represents a significant issue for direct sample-to-assay nucleic acid diagnostics from food, blood, tissue, PCR mixtures, and many other biologically complex sample formats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号