首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
As part of Main Roads Western Australia’s (MRWA) bridge management and bridge upgrading program, MRWA bridge no. 3014 was assessed to evaluate its condition before and after strengthening works with carbon-fiber-reinforced-polymers (CFRP). The assessment process coupled analytical results with field observations and dynamic testing of the structure. Vibration-based structural assessment of the bridge was conducted before and after the completion of the upgrading works. This paper presents the results of the vibration tests and modal analysis performed before and after the structure upgrading. In particular, the change in the structural properties and stiffness, before and after the strengthening, based on the analyses of the updated models of the bridge, is presented and discussed. The results demonstrate the effectiveness of using the dynamic assessment method to determine the elastic flexural stiffness of bridge structures retrofitted with CFRP.  相似文献   

2.
Advancements in fiber-reinforced polymers (FRPs) have made this an attractive material for rehabilitation and strengthening of bridge superstructures. FRP has primarily been used with the intention of increasing the bending strength of bridge members. However, this paper investigates the use of externally placed FRP strips to increase shear capacity of short-span, 5.7?m (19?ft), precast concrete channel beam bridges. A statewide survey revealed that as many as 389 bridges in the state of Arkansas are comprised of these members. Notably, beams within these bridges were designed under provisions that did not require shear reinforcement. In this research, four sections were retrofitted using carbon fiber-reinforced polymer (CFRP) strips and load tested to failure to measure the repair effectiveness. The performance of the retrofitted sections far exceeded that of unretrofitted sections. It was concluded that the addition of the CFRP repair increased the deflection ductility at least 123%. In addition, beams retrofitted with the CFRP strips experienced at least 26% more deflection after the initiation of a shear crack; therefore reducing the risk of a catastrophic failure.  相似文献   

3.
This paper presents the results of an investigation of the monotonic and fatigue behavior of one-way and two-way reinforced concrete slabs strengthened with carbon fiber-reinforced polymer (CFRP) materials. The five one-way slab specimens were removed from a decommissioned bridge in South Carolina. Three of the slabs were retrofitted with CFRP strips bonded to their soffits and the other two served as unretrofit, control specimens. Of the five one-way slab specimens, one unretrofit and two retrofit slabs were tested monotonically until failure. The remaining two specimens, one unretrofit and one retrofit, were tested under cyclic (fatigue) loading until failure. In addition, six half-scale, two-way slab specimens were constructed to represent a full-scale prototype of a highway bridge deck designed using the empirical requirements of the AASHTO LRFD Bridge Design Manual. Of the six square slabs, two were unretrofitted and served as the control specimens, two were retrofitted using CFRP strips bonded to their soffits making a grid pattern, and two were retrofitted with a preformed CFRP grid material bonded to their soffit. Three slabs, one unretrofit, one CFRP strip, and one CFRP grid retrofitted, were tested monotonically until failure and the remaining three slabs were tested under cyclic (fatigue) loading until failure.  相似文献   

4.
Sixteen shear capacity tests were performed on eight decommissioned AASHTO prestressed concrete girders that had been in service for over 42 years. These bridge members presented a unique opportunity to investigate carbon fiber-reinforced polymer (CFRP) retrofit schemes to enhance the shear capacity of underreinforced girders that were nonrectangular. Four destructive tests were performed to quantify the in-service strength of the girders and the remaining 12 tests were performed on CFRP retrofitted girders. In all, five configurations of the CFRP reinforcement were evaluated. Two anchoring techniques were investigated that either involved epoxying a horizontal CFRP strip over the vertical strips or a new methodology of epoxying a CFRP laminate into a groove over the vertical strips that was cut at the web-to-flange interface. Two methodologies that predicted the shear contribution of the carbon fiber reinforcement were compared with the test results. A carbon fiber-reinforcing scheme of vertical strips and horizontal anchorage strip was found to be the most effective in resisting the applied shear.  相似文献   

5.
This paper presents the negative bending of reinforced concrete slabs strengthened with near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) strips. Six slab specimens, three of which are strengthened with CFRP strips, are tested in static and fatigue loads. A wheel-running fatigue test machine is used to simulate vehicular loads on a bridge deck. The effectiveness of CFRP strengthening for bridge decks in cantilever and pseudonegative bending is examined based on moment-carrying capacity and cyclic behavior under the wheel-running fatigue loads, including crack patterns and damage accumulation. The moment-carrying capacity (static) of the cantilever slab strengthened with the NSM CFRP strips is improved by 68.4% when compared to that of an unstrengthened slab. The damage accumulation rate of the strengthened cantilever slab owing to the fatigue load is significantly lower than that of the unstrengthened slab. The damage accumulation of the strengthened slab gradually increases and is irreversible when the fatigue cycles increase. The fatigue-induced flexural cracks of the slabs develop along the wheel-running direction. A simple predictive model is presented to estimate the fatigue life of the test slabs.  相似文献   

6.
Acceptance of carbon fiber-reinforced polymer (CFRP) materials for strengthening concrete structures, together with the recent availability of higher modulus CFRP strips, has resulted in the possibility to also strengthen steel structures. Steel bridge girders and building frames may require strengthening due to corrosion induced cross-section losses or changes in use. An experimental study investigating the feasibility of different strengthening approaches was conducted. Large-scale steel-concrete composite beams, typical of bridge structures, were used to consider the effect of CFRP modulus, prestressing of the CFRP strips, and splicing finite lengths of CFRP strips. All of the techniques examined were effective in utilizing the full capacity of the CFRP material, and increasing the elastic stiffness and ultimate strength of the beams. Results of the experimental program were compared to an analytical model that requires only the beam geometry and the constitutive properties of the CFRP, steel, and concrete. This model was used to investigate the importance of several key parameters. Finally, an approach for design is proposed that considers the bilinear behavior of a typical strengthened beam to the elastic-plastic behavior of the same beam before strengthening.  相似文献   

7.
A 45-year old, three-span reinforced concrete slab bridge with insufficient capacity was retrofitted with 76.2- and 127-mm wide bonded carbon fiber-reinforced polymer (FRP) plates, 102-mm wide bonded carbon FRP plates with mechanical anchors at the ends, and bonded carbon FRP fabrics. The use of four systems in one bridge provided a unique opportunity to evaluate field installation issues and to examine the long-term performance of each system under identical traffic and environmental conditions. Using controlled truckload tests, the response of the bridge before retrofitting, shortly after retrofitting, and after one year of service was measured. The stiffness of the FRP systems was small in comparison to the stiffness of the bridge deck, and accordingly the measured deflections did not change noticeably after retrofitting. The measured strains suggest participation of the FRP systems, and more importantly, the strength of the retrofitted bridge was increased. A detailed 3D finite-element model of the original and retrofitted bridge was developed and calibrated based on the measured deflections. The model was used to predict more accurately the demands for computing the rating factors. The addition of FRP plates and fabrics led to a 22% increase in the rating factor and corresponding load limits. During a one-year period, traffic loading and environmental exposure did not apparently affect the performance of the FRP systems. The increased capacity and acceptable performance of the FRP systems enabled the engineers to remove the load limits in order to resume normal traffic. Future tests are necessary to monitor the long-term behavior of the FRP systems.  相似文献   

8.
Fiber-reinforced polymers (FRP) are becoming more widely used for repair and strengthening of conventionally reinforced concrete (RC) bridge members. Once repaired, the member may be exposed to millions of load cycles during its service life. The anticipated life of FRP repairs for shear strengthening of bridge members under repeated service loads is uncertain. Field and laboratory tests of FRP-repaired RC deck girders were performed to evaluate high-cycle fatigue behavior. An in-service 1950s vintage RC deck-girder bridge repaired with externally bonded carbon fiber laminates for shear strengthening was inspected and instrumented, and FRP strain data were collected under ambient traffic conditions. In addition, three full-size girder specimens repaired with bonded carbon fiber laminate for shear strengthening were tested in the laboratory under repeated loads and compared with two unfatigued specimens. Results indicated relatively small in situ FRP strains, laboratory fatigue loading produced localized debonding along the FRP termination locations at the stem-deck interface, and the fatigue loading did not significantly alter the ultimate shear capacity of the specimens.  相似文献   

9.
Concrete columns requiring strengthening intervention always contain a certain percentage of steel hoops. Applying strips of wet layup carbon fiber-reinforced polymer (CFRP) sheets inbetween the existent steel hoops might, therefore, be an appropriate confinement technique with both technical and economic advantages, when full wrapping of a concrete column is taken as a basis of comparison. To assess the effectiveness of this discrete confinement strategy, circular cross-sectional concrete elements confined by distinct arrangements of strips of CFRP sheet are submitted to a direct compression load up to the failure point. The influence of the width of the strip, distance between strips, number of CFRP layers per strip, CFRP stiffness, and concrete strength class on the increase of the load carrying capacity and ductility of concrete columns, is evaluated. An analytical model is developed to predict the compressive stress-strain relationship of concrete columns confined by discrete and continuous CFRP arrangements. The main results of the experimental program are presented and analyzed and used to assess the model performance.  相似文献   

10.
Fiber reinforced plastics (FRP) are commonly used for the strengthening of concrete members. For shear strengthening of beams, FRP strips can be bonded to the sides of the member alone, to both the sides and the bottom (i.e., the U configuration), or wrapped around the whole beam. For the various strengthening configurations, empirical equations have been proposed for predicting the contribution of strips to the shear capacity of the member. However, for the same strengthened member, the equations recommended by different design guidelines (American Concrete Institute, International Federation for Structural Concrete, and Japan Society for Civil Engineers) predict different shear capacities. Moreover, as the equations were obtained through the fitting of laboratory data on relatively small beams, their applicability to beams of practical sizes have not really been assessed. In the present investigation, geometrically similar beams with depth of 180, 360, and 720?mm were retrofitted in shear with carbon FRP strips in both the U configuration and fully wrapped configuration. The retrofitted members were tested to failure to (1) provide data on beams of practical sizes for verification of design equations and (2) investigate if the strengthening effectiveness is similar for small and large beams. Measured FRP contribution to the shear capacity is also compared to predictions from equations in the various guidelines. Based on our findings, for beams retrofitted with strips in the U configuration, the strengthening effectiveness may significantly decrease with member size, and none of the available design equations can consistently provide conservative values for the shear capacity. For beams with fully wrapped strips, strengthening effectiveness is independent of member size, and the FIB equation appears to be most appropriate for practical design.  相似文献   

11.
Many prestressed concrete bridges are in need of upgrades to increase their posted capacities. The use of carbon fiber-reinforced polymer (CFRP) materials is gaining credibility as a strengthening option for reinforced concrete, yet few studies have been undertaken to determine their effectiveness for strengthening prestressed concrete. The effect of the CFRP strengthening on the induced fatigue stress ratio in the prestressing strand during service loading conditions is not well defined. This paper explores the fatigue behavior of prestressed concrete bridge girders strengthened with CFRP through examining the behavior of seven decommissioned 9.14?m (30?ft) girders strengthened with various CFRP systems including near-surface-mounted bars and strips, and externally bonded strips and sheets. Various levels of strengthening, prestressing configurations, and fatigue loading range are examined. The experimental results are used to provide recommendations on the effectiveness of each strengthening configuration. Test results show that CFRP strengthening can reduce crack widths, crack spacing, and the induced stress ratio in the prestressing strands under service loading conditions. It is recommended to keep the prestressing strand stress ratio under the increased service loading below the value of 5% for straight prestressing strands, and 3% for harped prestressing strands. A design example is presented to illustrate the proposed design guidelines in determining the level of CFRP strengthening. The design considers the behavior of the strengthened girder at various service and ultimate limit states.  相似文献   

12.
The State Street Bridge, in Salt Lake City, was designed and built in 1965 according to the 1961 AASHO specifications; the design did not include earthquake-induced forces or displacements since only wind loads were considered. The bridge consists of four reinforced concrete (RC) bents supporting composite welded steel girders; the bents are supported on cast-in-place concrete piles and pile caps. A vulnerability analysis of the bridge was conducted that determined deficiencies in (1) confinement of column lap splice regions, (2) anchorage of longitudinal column bars in the bent cap, (3) confinement of column plastic hinge zones, and (4) shear capacity of columns and bent cap–column joints. Seismic retrofit designs using carbon-fiber-reinforced-polymer (CFRP) composites and steel jackets were performed and compared for three design spectra, including the 10% probability of exceedance in 250 years earthquake. The CFRP composite design was selected for implementation and application of the composite was carried out in the summer of 2000 and 2001, while the bridge was in service. The paper describes the CFRP composite design, which, in addition to column jackets, implemented an “ankle wrap” for improving joint shear strength and a “U-strap” for improving anchorage of column bars in the bent cap; other retrofit measures were implemented, such as bumper brackets and a deck slab retrofit. A capacity versus demand evaluation of the as-built and retrofitted bents is presented.  相似文献   

13.
In recent years, a strengthening technique based on near-surface mounted (NSM) laminate strips of carbon-fiber-reinforced polymer (CFRP) has been used to increase the load-carrying capacity of concrete and masonry structures by introducing laminate strips into precut grooves on the concrete cover of the elements to be strengthened. The high experimentally derived levels of strength efficacy with concrete columns, beams, and masonry panels have presented NSM as a viable and promising technique. This practice requires no surface preparation work and, after cutting the groove, requires minimal installation time compared to the externally bonded reinforcing technique. A further advantage associated with NSM CFRP is its ability to significantly reduce the probability of harm resulting from fire, acts of vandalism, mechanical damage, and aging effects. To assess the bond behavior of CFRP to concrete, pullout-bending tests have been carried out. The influences of bond length and concrete strength on bond behavior are analyzed, the tests are described, and the results are presented and discussed in detail. Finally, a local stress-slip relationship is determined based on both experimental results and a numerical strategy.  相似文献   

14.
In civil engineering today, only 20 to 30% of the strength of carbon-fiber-reinforced polymer (CFRP) strips is used when they are applied as externally bonded strips for flexural and shear strengthening or in confinement of reinforced concrete (RC) structural elements. The strips are better used when the CFRP material is prestressed. This offers several advantages, including reduced crack widths, reduced deflections, reduced stress in the internal steel, and possibly increased fatigue resistance. In this paper, recent developments in the field of RC strengthening using prestressed CFRP are presented. The paper focuses on developments in flexural and shear strengthening and column confinement made at the Swiss Federal Laboratory for Materials Testing and Research (Empa). Several innovative ideas have been successfully realized in the laboratory. For example, a gradient prestressing technique without end anchorage plates was developed and successfully applied to a 17?m RC bridge girder. A confinement technique using nonlaminated thermoplastic CFRP straps was also investigated and applied to 2?m high RC columns. These results are encouraging, although practical and theoretical problems remain to be solved before these techniques can be fully applied.  相似文献   

15.
The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading for refurbishing and strengthening bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short-span bridge taking a busy main road across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised three separate components: (1) a strain and acceleration monitoring exercise lasting approximately one month; (2) a full-scale dynamic test carried out in a single day without closing the bridge; and (3) a finite-element model updating exercise to identify structural parameters and mechanisms. This paper presents the dynamic testing and the modal analysis used to identify the vibration properties and the quantification of the effectiveness of the upgrading through the subsequent model updating. Before and after upgrade, similar sets of vibration modes were identified, resembling those of an orthotropic plate with relatively weak transverse bending stiffness. Conversion of bearings from nominal simple supports to nominal full fixity was shown via model updating to be the principal cause of natural frequency increases of up to 50%. The utility of the combined experimental and analytical process in direct identification of structural properties has been proven, and the procedure can be applied to other structures and their capacity assessments.  相似文献   

16.
Near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) laminate strips are used to increase the load-carrying capacity of concrete structures. This is done by inserting the CFRP strips into slits made in the concrete cover of the elements to be strengthened and gluing the strips to the concrete with an epoxy adhesive. In several cases the NSM technique has substantial advantages when compared with externally bonded laminates. To assess the bond behavior between the CFRP and concrete under monotonic and cyclic loading, an experimental program was carried out based on a series of pullout-bending tests. The influence of the bond length and loading history on the bond behavior was investigated. In this work the details of the tests are described and the obtained results discussed. Using the experimental data and an analytical-numerical strategy, a local bond stress-slip relationship was determined. A finite-element analysis was performed to evaluate the influence of the adhesive on the global response observed in the pullout-bending tests.  相似文献   

17.
A stochastic model of traffic excitation on bridges is developed assuming that the arrival of vehicles traversing a bridge (modeled as an elastic beam) follows a Poisson process, and that the contact force of a vehicle on the bridge deck can be converted to equivalent dynamic loads at the nodes of the beam elements. The parameters in this model, such as the Poisson arrival rate and the stochastic distribution of vehicle speeds, are obtained by image processing of traffic video data. The model reveals that traffic excitations on bridges are spatially correlated. This important characteristic is usually incorrectly ignored in most output-only methods for the identification of bridge structural properties using traffic-induced vibration measurement data. In this study, the stochastic traffic excitation model with partial traffic information is incorporated in a Bayesian framework, to evaluate the structural properties and update their uncertainty for condition assessment of the bridge superstructure. The vehicle weights are also estimated simultaneously in this procedure. The proposed structural assessment methodology is validated on an instrumented highway bridge.  相似文献   

18.
A sound repair on a 40 year old four-span prestressed concrete girder bridge is performed with an innovative strengthening method using prestressed carbon fiber reinforced polymer (CFRP) sheets. In fact, this application is the first North American field application of its type. An adequate repair design is conducted based on the American Association of State Highway and Transportation Officials Load Resistance Factor Design (AASHTO LRFD) and the Canadian Highway Bridge Design Code. To ensure the feasibility of the site application using prestressed CFRP sheets, tests are conducted and closed-form solutions are developed to investigate the behavior of the anchor system that is necessary for prestressing the CFRP sheets. A full-scale finite-element analysis (FEA) is performed to investigate the flexural behavior of the bridge in the undamaged, damaged, and repaired states. The AASHTO LRFD exhibits conservative design properties as compared to the FEA results. The repaired bridge indicates that the flexural strength of the damaged girder has been fully recovered to the undamaged state, and the serviceability has also been improved. An assessment based on the AASHTO rating factor demonstrates the effectiveness of the repair.  相似文献   

19.
The lack of safety of deck slabs in bridges generally causes frequent repair and strengthening. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of a realistic and accurate assessment system for bridge decks. The purpose of the present paper is therefore to develop a realistic assessment system which can estimate reasonably the safety, as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the traffic loads and environmental effect. A deterioration model due to chloride ingress is first established. The damage models due to repetitive traffic loads considering the dry and wet conditions of deck slabs are proposed. These models are used to calculate the remaining life of a bridge deck slab. A prediction method for service life of deck slab due to loading and environmental effects is developed based on material, as well as structural evaluation. The proposed method includes the assessment of corrosion in material level, and the analyses of flexure, shear, and fatigue in structural level. Finally, an assessment system for prediction of safety and remaining service life is developed based on the theories established in this study. The developed assessment system will allow the correct diagnosis of damage state and the realistic prediction of service life of concrete decks in girder bridges.  相似文献   

20.
Fiber reinforced polymer (FRP) materials are currently produced in different configurations and are widely used for the strengthening and retrofitting of concrete structures and bridges. Recently, considerable research has been directed to characterize the use of FRP bars and strips as near surface mounted reinforcement, primarily for strengthening applications. Nevertheless, in-depth understanding of the bond mechanism is still a challenging issue. This paper presents both experimental and analytical investigations undertaken to evaluate bond characteristics of near surface mounted carbon FRP (CFRP) strips. A total of nine concrete beams, strengthened with near surface mounted CFRP strips were constructed and tested under monotonic static loading. Different embedment lengths were used to evaluate the development length needed for effective use of near surface mounted CFRP strips. A closed-form analytical solution is proposed to predict the interfacial shear stresses. The model is validated by comparing the predicted values with test results as well as nonlinear finite element modeling. A quantitative criterion governing the debonding failure of near surface mounted CFRP strips is established. The influence of various parameters including internal steel reinforcement ratio, concrete compressive strength, and groove width is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号