首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The purpose of this study was to examine the swelling and deswelling of photochemically crosslinked poly(n‐butylacrylate) networks in isotropic and anisotropic solvents. The phase diagrams were established in terms of composition and temperature for five isotropic solvents, acetone, cyclohexane, methanol, tetrahydrofuran, and toluene, and two low‐molecular‐weight nematic liquid crystals, 4‐cyano‐4′‐n‐pentyl‐biphenyl and an eutectic mixture of cyanoparaphenylenes. Networks were formed by ultraviolet curing in the presence of 0.5 wt % difunctional monomer (hexane diol‐di‐acrylate) and 0.5 wt % photoinitiator (Darocur 1173). Immersion in excess solvent allowed us to measure the solvent uptake by weight and to determine the size increase by optical microscopy in terms of temperature. We calculated weight and diameter ratios considering the swollen‐to‐dry network states of the samples. Phase diagrams were analyzed with the phantom network model according to the Flory–Rehner theory of rubber elasticity, and for the anisotropic solvents, modeling was supplemented with the Maier–Saupe theory of nematic order for free energy. The polymer–solvent interaction parameter was deduced as a function of temperature, but the values were in discrepancy with Fedors's model of solubility parameters, which overestimated the interaction. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1–9, 2004  相似文献   

2.
Poly(vinyl alcohol) (PVA) gels can be easily prepared by either the freeze‐thawing (FT gel) method or by the cast‐drying (CD gel) method. Although the resulting nanostructured networks of the FT and CD gels are similar, their physical properties are quite different; while CD gels are transparent and elastic, FT gels are opaque and less elastic. Moreover, the tear energy of the FT gels is much greater than that of the CD gels, which is a direct result of micrometer‐scale differences in their network structures. In order to control the distribution of microcrystallites on nano‐ and micrometer scales, FT gels were prepared from PVA solutions with different water contents. As a result, the gel gradually became more transparent as the initial water content was decreased; and accordingly, the tear energy decreased. Tear resistance was improved in the case of FT gels by repeating the number of FT cycles, whereas with CD gels, this was achieved by increasing the gelation temperature. These results indicate that the microscopic network structures are characterized by a micrometer‐scale bundled‐polymer (fibril), which determines the tear energy of FT gels. Simple methods to control the fibril network structure of FT gels using a unidirectional freezing method are presented herein, with the swelling and mechanical properties of modified FT gels discussed in terms of their multiple‐scale network structures. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41356.  相似文献   

3.
pH and temperature responsive nanocomposite hydrogels were synthesized with sodium alginate (NaAlg), N‐isopropylacrylamide (NIPA), and nanoclay. The structure, morphology, thermal behavior, and swelling and deswelling behaviors of the hydrogels were studied. The NaAlgm/PNIPA/Clayn hydrogels revealed a highly porous structure in which the pore sizes decreased and the amount of pores increased with increasing the nanoclay content in the hydrogels. PNIPA retained its own characteristics regardless of the amount of NaAlg and nanoclay. The effect of pH and nanoclay content on the swelling and effect of temperature on the deswelling behavior were investigated. The equilibrium swelling ratios of the nanocomposite hydrogels increased with increasing the pH from 2 to 6. The maximum swelling was attained at pH 6. Deswelling increased with increasing the nanoclay content in the hydrogels. The hydrogels were found to be pH and temperature responsive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43222.  相似文献   

4.
The nanocomposite films comprising polymer blends of poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO), and poly(ethylene glycol) (PEG) with montmorillonite (MMT) clay as nanofiller were prepared by aqueous solution casting method. The X‐ray diffraction studies of the PVA–x wt % MMT, (PVA–PVP)–x wt % MMT, (PVA–PEO)–x wt % MMT and (PVA–PEG)–x wt % MMT nanocomposites containing MMT concentrations x = 1, 2, 3, 5 and 10 wt % of the polymer weight were carried out in the angular range (2θ) of 3.8–30°. The values of MMT basal spacing d001, expansion of clay gallery width Wcg, d‐spacing of polymer spherulite, crystallite size L and diffraction peak intensity I were determined for these nanocomposites. The values of structural parameters reveal that the linear chain PEO and PEG in the PVA blend based nanocomposites promote the amount of MMT intercalated structures, and these structures are found relatively higher for the (PVA–PEO)–x wt % MMT nanocomposites. It is observed that the presence of bulky ester‐side group in PVP backbone restricts its intercalation, whereas the adsorption behavior of PVP on the MMT nanosheets mainly results the MMT exfoliated structures in the (PVA–PVP)–x wt % MMT nanocomposites. The crystallinities of the PEO and PEG were found low due to their blending with PVA, which further decreased anomalously with the increase of MMT concentration in the nanocomposites. The decrease of polymer crystalline phase of these materials confirmed their suitability in preparation of novel solid polymer nanocomposite electrolytes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40617.  相似文献   

5.
In situ electrical conductivity and X‐ray tomography experiments are conducted on a conductive polymer composite containing polyvinylidene fluoride (PVDF) copolymer, copper (Cu), and tin (Sn) during thermal annealing. During annealing, the electrical resistivity drops by an order of magnitude, while X‐ray tomography, electron microscopy, and spectroscopy results show increasingly homogeneous dispersion of Sn in the conductive filler network, accompanied by the formation of Cu–Sn intermetallic around Cu and Sn particles. This study provides detailed insight into the morphological origins of the beneficial effect of thermal annealing on the electrical properties of conductive composites containing low melting metal fillers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45399.  相似文献   

6.
A study on the possibility of the preparation of superabsorbent hydrogels based on crosslinked carboxymethyl cellulose polymer and acrylamide monomer through electron‐beam irradiation was carried out. The effects of the irradiation dose and polymer–monomer compositions on the crosslinking density were studied. The hydrophilic properties of the superabsorbent hydrogels were identified by the swelling percentage. The prepared hydrogels had higher swelling in distilled water than in salt solutions. Moreover, the hydrogels exhibited the highest swelling at pH 7. Also, increasing the temperature up to 50°C caused an increase in the swelling. The thermal properties of the hydrogels were characterized with thermogravimetric analysis. The use of the prepared superabsorbent hydrogels for the growth of rice was also investigated through the water‐retention property. The water retention in the soil was enhanced with the hydrogels. Superabsorbent hydrogels based on carboxymethyl cellulose polymer and acrylamide monomer could be considered as water‐managing materials for agriculture and horticulture in desert and drought‐prone areas. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2003–2008, 2007  相似文献   

7.
A series of novel copolymer superabsorbents based on maleic anhydride (MLN), acrylamide (AAM), hydroxyethyl methacrylate (HEMA), and N,N′‐methylenebisacrylamide (NMBA) were prepared by inverse‐suspension polymerization. The influence of the reaction parameters on the water absorption was investigated to improve the understanding and to identify the optimum reaction conditions. The water absorbences or swelling behaviors for these absorbents in various salt solutions and various alcohol solutions were studied. The tendency of the absorbency for these absorbents in salt and alcohol solutions is in the order Na+ > Ca2+ > Al3+ for NaCl, CaCl2, and AlCl3 aqueous solutions and a glycerol > glycol > methanol > ethanol solution, respectively. This article also explains the IR and SEM characterization of the water‐absorbing copolymers and their practical use in soil for water retention. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2725–2731, 2003  相似文献   

8.
Nanocomposites based on an organically modified bentonite, from Maghnia Algeria (OBT) and a copolymer of methyl methacrylate with 4‐vinylpyridine (PMM4VP) synthesized in dioxan at room temperature using a neutral Ni(II)α‐benzoinoxime complex as a single component initiator, were elaborated via solution intercalation method and characterized by several techniques. X‐ray diffraction and transmission electron microscopy investigations indicate that mainly exfoliated and intercalated PMM4VP/OBT nanocomposites were elaborated and that the degree of exfoliation decreases with an increase of the OBT loading. Thermal analyses of these nanocomposites compared with their virgin copolymer confirmed a significant improvement of their thermal stability as evidenced by an increase of 28°C in their onset degradation temperatures. In addition, differential scanning calorimetry displayed an increase in the range of 12–18°C in their glass transition temperatures relative to their virgin copolymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Hydrogels are materials with advantages in specific applications, such as, retention of food active compounds. This work aims to develop starch (S)/carboxymethyl cellulose (CMC) hydrogels with porous structure, using reactive extrusion to promote crosslinking with sodium trimetaphosphate (STMP). The expansion, porosity, degree of substitution, gel fraction, swelling properties, and FTIR are studied, comparing S, S/CMC, S/STMP, and S/CMC/STMP formulations. Samples containing STMP present the same degree of substitution (0.050 ± 0.001). Higher porosity and percentage of open pores are observed in the mixed hydrogel (S/CMC/STMP). Crosslinking increase the swelling capacity at pH 7, and this property, just like the gel fraction, are sensitive to pH variations. The hydrogel S/CMC present the highest swelling rate compared with the other samples, suggesting strong interaction between components. The reactive extrusion process is efficient to produce starch and starch/CMC hydrogels crosslinked with STMP and the overall results demonstrate the advantages of the mixed hydrogel.  相似文献   

10.
Injectable, de‐crosslinkable, and thermosensitive hydrogels are obtained by hydrazide‐functionalized poly(N‐isopropylacrylamide) and aldehyde‐functionalized dextrin through in situ crosslinked method. Natural based and degradable starch nanoparticles (SNPs) are used as fillers in order to improve mechanical property of hydrogels. Internal morphology, dynamic modulus, thermosensitivity property, de‐crosslinking performance, drug release, and in vitro cytotoxicity of hydrogels are investigated. Results show that SNPs disperse well throughout hydrogel and have no significant influence on gelation time and de‐crosslinking performance. Elasticity property of composite hydrogel prepared from 9.0 wt % precursors with 1.5 wt % fillers is improved significantly by SNPs and maximum storage modulus reaches 399.2 kPa, but 89.6 kPa of unreinforced hydrogels. Hydrogels exhibit good thermosensitive performance at alternating cyclic temperature of 25 and 37 °C. Doxorubicin hydrochloride‐loaded hydrogels can release more than 25 days. No significant cytotoxicity to L929 fibroblast cells is observed through a CCK‐8 assay for hydrogels, precursors, and SNPs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45761.  相似文献   

11.
pH‐ and temperature‐responsive semi‐interpenetrating nanocomposite hydrogels (NC hydrogels) were prepared with surface‐functionalized graphene oxide (GO) as the crosslinker, N‐isopropylacrylamide (NIPAM) as the monomer, and chitosan (CS) as an additive. The effects of 3‐(trimethoxysilyl)propylmethacrylate‐modified GO sheets and CS content on various physical properties were investigated. Results show that PNIPAM/CS/GO hydrogels undergo a large volumetric change in response to temperature. Swelling ratios of PNIPAM/CS/GO hydrogels are much larger than those of the conventional organically crosslinked PNIPAM hydrogels. The deswelling test indicates that the deswelling rate was greatly enhanced by incorporating CS into the hydrogel network and using the surface‐functionalized GO as the crosslinker. The pH‐sensitivity of PNIPAM/CS/GO hydrogels is evident below their volume phase transition temperature. Moreover, the PNIPAM/CS/GO hydrogels have a much better mechanical property compared with traditional hydrogels even in a high water content of 90%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41530.  相似文献   

12.
A commercial crosslinked ionic polymer AV‐17 containing ? N(CH3)3Cl groups was used. The common compounds of Bi(III) and Al(III); Bi(III) and Cr(III); Bi(III) and Fe(III); Bi(III) and FeOOH and of three components—Bi(III), Fe(III), and Cr(III); Bi(III), FeOOH, and Cr(III) were obtained in the AV‐17 polymer phase and investigated using scanning electron microscopy, powder X‐ray diffraction, thermogravimetric analysis, and Fourier‐transform infrared spectroscopy. It was shown that metal‐containing compounds were concentrated on the surface of the polymer granules. The compounds were in the crystalline (BiOCl) or amorphous (jarosites and oxihydroxides) state. The morphology and composition of the metal‐containing ultra dispersed particles were different on the surface and in the volume of the polymer granule. Most of the metal‐containing compounds were in the form of pseudo spherical particles, but compounds containing Bi(III) and FeOOH in the volume of AV‐17 granule, were in the form of clew of nanometer fibers. Thermogravimetric analysis (in an N2 atmosphere) in the range 24–1000°C of the metallic compounds containing polymer was also carried out. The metal‐containing polymer samples were stable up to 120°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
In this study, emeraldine base (EB)‐form polyaniline (PANI) powder was chemically prepared in 1M HNO3 aqueous solution. The thermal characteristics and chemical structures of this powder were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X‐ray diffraction (XRD). A polarizing optical microscope was also used to examine the crystalline morphology of this sample. The results indicated that the EB‐form PANI powder had a discernible moisture content. Moreover, in the first run of DSC thermal analysis, the exothermic peak at 170–340°C was due to the crosslinking reaction occurring among the EB‐form PANI molecular chains. FTIR and XRD examinations further confirmed the chemical crosslinking reaction during thermal treatment. TGA results illustrated that there were two major stages for weight loss of the EB‐form PANI powder sample. The first weight loss, at the lower temperature, resulted from the evaporation of moisture. The second weight loss, at the higher temperature, was due to the chemical structure degradation of the sample. The degradation temperature of the EB‐form PANI powder was around 420–450°C. The degradation temperature of emeraldine salt (ES)‐form PANI powder was lower (around 360–410°C) than that of the EB form (around 420–450°C). From the TGA results, I roughly estimated that 2.74 aniline repeat units, on average, were doped with 1 HNO3 molecule in the ES‐form PANI. I found a single crystalline morphology of EB‐form PANI, mostly like a conifer leaf. More complex, multilayered dendritic structures were also found. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2142–2148, 2003  相似文献   

14.
In this study, we have investigated the efficacy of crosslinked polyvinyl alcohol (PVA) hydrogel as a wound dressing material, using rat as the animal model. The hydrogel was synthesized by chemical crosslinking of PVA with potassium persulphate and the crosslinking reaction parameters were optimized. The developed hydrogel was found to possess excellent mechanical properties, high water absorption capacity, gel content, and optimum water vapor transmission rate, indicating its ability to act as an effective wound dressing material. The inherent nontoxic characteristics of PVA remained unaltered after crosslinking. The in vitro diffusion studies of bovine serum albumin (BSA) as model protein, indicated a relatively slow release of protein resulting from its microencapsulation in the polymeric matrix. For in vivo studies, full‐thickness excision wounds (2 × 2 cm2) were made on the dorsal surface of rats. The hydrogel was applied on the wound and changed at regular intervals. For comparison of wound healing ability, a radiation crosslinked PVA‐based hydrogel, “HiZel” was used as a reference control. The wounds treated with PVA hydrogel healed faster as indicated by an increased rate of wound contraction (16.5 days versus 22.0 in control group). Treatment with “Hizel” led to increase in hydroxyproline in the wound tissue, whereas treatment with PVA hydrogel led to increase in both hydroxyproline as well as hexosamine. This probably provides added strength to the tissue, thereby indicating that PVA hydrogel had higher efficacy than “Hizel”. The results suggest that chemically crosslinked PVA hydrogel could be used as an effective wound dressing material. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

16.
The blend films of polyurethane (PU) and amino‐terminal hyperbranched polymers (HBP‐NH2) were prepared successfully by mixing HBP‐NH2 solution and PU. The rate of moisture absorption and mechanical properties were determined. The results showed that the rates of moisture absorption and vapor permeability were improved from 0.34% to 7.51% and from 161 gm?2 d?1 to 879 gm?2 d?1, respectively. The addition of HBP‐NH2 is helpful to improve the hygiene properties of PU films. Then, the structures of the blend films were characterized by IR, XRD, TG, and SEM at the same time. The results indicated that HBP‐NH2 and PU had hydrogen‐bond interaction and a certain phase separation. The blend films had good heat stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41383.  相似文献   

17.
Polyacrylamides with 2–20 mol % divinyl benzene (DVB), N,N′‐methylene‐bisacrylamide (NNMBA), 1,6‐hexanediol diacrylate (HDODA), and tetraethyleneglycol diacrylate (TTEGDA) crosslinking and without crosslinking were prepared by free radical solution polymerization. Amino functions were incorporated into these polymers by transamidation with excess ethylenediamine. The dye uptake of nonprotonated and protonated aminopolyacrylamides was followed by batch equilibration method towards Rose Bengal (RB), Methyl Orange (MO), Methyl Red (MR), and Methylene Blue (MB). RB uptake by the polyacrylamide‐supported systems is higher than other dyes. Generally the dye uptake by the protonated systems is higher than the nonprotonated systems. To optimize the conditions of dye uptake, the effect of the concentration of RB solutions, temperature, and pH were followed. Kinetic studies showed that the uptake of RB by both nonprotonated and protonated crosslinked aminopolyacrylamides is a phase boundary process followed by three‐dimensional diffusion. The extent of RB uptake by the various systems depends on the nature and degree of crosslinking, and the relative rigidity/flexibility ofthe polyacrylamide support. Thus, the dye uptake followed the order: linear > NNMBA‐ > DVB‐ > TTEGDA‐ > HDODA‐crosslinked system. The dye uptake followed the same trend as the variation of amino capacity with degree of crosslinking in the respective crosslinked system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Novel films based on hydroxyl terminated hyperbranched poly (amine‐ester) (HPAE‐OH) of different generation were prepared by crosslinking the terminal hydroxyl groups of HPAE with glutaraldehyde (GA). The progress of crosslinking reaction was characterized by Fourier transform infrared (FTIR) and viscosity measurement. The surface morphology of the crosslinked HPAE films was characterized by field emission scanning electron microscope (FE‐SEM) and atomic force microscopy. The results suggested that the films have homogenously dense interior matrices and smooth surface. The hydrophilicity/hydrophobicity of the crosslinked HPAE films was characterized by the water contact angle measurement. Variable swelling behavior in different solvents was also studied. The in vitro biocompatibility of the film was investigated by the bovine hemoglobin (Hb) adsorption measurement. And these results showed that these crosslinked HPAE films had excellent hydrophilicity, variable swelling behavior in different solvents, and relative low protein absorption. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The occurrence of the volume phase transition triggered by the phase separation of mixed solvents is investigated using polyacrylamide gels in mixtures of water and 2‐butoxyethanol. When the water content of the mixtures is lower than that of the critical composition, the temperature‐dependent swelling curves show a steep change around the phase separation temperatures but remain continuous, although the solvent inside the gel undergoes a discontinuous composition change. This continuous change originates from the critical concentration fluctuation below the spinodal temperature. Hysteresis‐like behavior is also observed for the heating and cooling curves. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46366.  相似文献   

20.
Nanocomposites of isotactic polypropylene (iPP) and multiwalled carbon nanotubes (MWCNTs) with various contents of MWCNTs were fabricated by double molding techniques. X‐ray diffraction measurements reveal a development of α‐crystal with lamellar stacks having a long period of 150 Å in the neat iPP that increases to 165 Å in 2 wt % MWCNTs‐loaded composites, indicating that MWCNTs enhance crystallization of iPP as a nucleating factor. Mechanical properties, such as tensile strength, flexural strength, Young's modulus, tangent modulus, and microhardness are found to increase with increasing MWCNTs content. Thermal analyses represent an increase of crystallization and melting temperatures and a decrease of thermal stability of the composites with increasing MWCNTs. Changes in structural, mechanical, and thermal properties of the composites due to the addition of MWCNTs are elaborately discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号