首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmentally friendly chitosan (CS)–poly(lactic acid) (PLA) nanofiber mats were designed and constructed by an electrospinning strategy. Studies on the wettability of the CS–PLA nanofiber mats showed that they possessed excellent hydrophobic and oleophilic properties in the pH range 1–12. A layered oil–water mixture was separated by CS–PLA nanofiber mats, and the oil flux of the mats collected by #10 stainless steel wire mesh (sample P‐10) was up to 511.36 L m?2 h?1, which was approximately 25 times higher than that of the mats collected by #0 stainless steel wire meshes (sample P‐N). The superior properties of the CS–PLA nanofiber mats may have been due to their tunable porous structure and fine flexibility. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45830.  相似文献   

2.
Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU) nanofiber mats were prepared using electrospinning method with aqueous solutions. Scanning electron microscopy (SEM), X‐ray diffraction (XRD), thermal gravimetric analyzer (TGA), and tensile strength testing machine (ZWICK) were used to characterize the morphology and properties of the PVA/WBPU nanofiber mats. The results showed that the morphologies of PVA/WBPU nanofiber mats changed with the total solid concentration and the mass ratio of PVA/WBPU in the spinning solution. The tensile strength and thermal stability of the fibers could be significantly affected by the WBPU contents. The electrospun PVA/WBPU membranes showed higher water uptake, which would have potential applications in wound dressings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanofiber mats have been fabricated by the electrospinning technique. The PVA/MMT nanofiber mats were characterized by X‐ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and mechanical measurements. The study showed that the introduction of MMT results in improvement in tensile strength, and thermal stability of the PVA matrix. XRD patterns and SEM micrographs suggest the coexistence of exfoliated MMT layers over the studied MMT contents. FTIR revealed that there might be possible interaction occurred between the MMT clay and PVA matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Core-shell-structured polyvinyl alcohol (PVA)-poly (lactic acid) (PLA) nanofibers combining the hydrophilic trait of PVA and the biocompatibility of PLA were produced using coaxial electrospinning. This allowed the incorporation of AgNO3 in the PVA core of the distinct fibers as shown through transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) showed relatively uniform and bead-free fibers with smooth surfaces. Ag-containing fibers show significantly decreased diameters compared with Ag-free samples as a result of the increased conductivity of the spinning solutions with increasing amounts of AgNO3. In a postsynthetic treatment, the AgNO3 was reduced forming silver nanoparticles (Ag NPs). Ag NPs of 45 to 90 nm size were located in the PVA core but also on the surface of the core-shell fibers and as individual, agglomerated, and polymer-coated particles of 100-200 nm. Powder X-ray diffraction (PXRD), energy dispersive X-ray spectroscopy (EDX), and UV-vis absorption spectroscopy confirmed the increasing amounts of Ag in the core-shell fibers when using increasing amounts of AgNO3 in the spinning solutions. The antibacterial activity of the nanofiber mats against two prokaryotes Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) increased with increasing amounts of Ag, as expected and produces inhibition zones of 1 to 2 mm.  相似文献   

5.
The aim of this study was to develop novel biomedical electrospun nanofiber mats for controlled drug release, in particular to release a drug directly to an injury site to accelerate wound healing. Here, nanofibers of chitosan (CS), poly(ethylene oxide) (PEO), and a 90 : 10 composite blend, loaded with a fluoroquinolone antibiotic, such as ciprofloxacin hydrochloride (CipHCl) or moxifloxacin hydrochloride (Moxi), were successfully prepared by an electrospinning technique. The morphology of the electrospun nanofibers was investigated by scanning electron microscopy. The functional groups of the electrospun nanofibers before and after crosslinking were characterized by Fourier transform infrared spectroscopy. X‐ray diffraction results indicated an amorphous distribution of the drug inside the nanofiber blend. In vitro drug‐release evaluations showed that the crosslinking could control the rate and period of drug release in wound‐healing applications. The inhibition of bacterial growth for both Escherichia coli and Staphylococcus aureus were achieved on the CipHCl‐ and Moxi‐loaded nanofibers. In addition, both types of CS/PEO and drug‐containing CS/PEO nanofibers showed excellent cytocompatibility in the cytotoxicity assays. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42060.  相似文献   

6.
The poor mechanical properties of electrospun materials remain one of the major hindrances toward their practical application. In this study, we report the synthesis of core‐sheath nanofibrous mats to enhance the mechanical properties of an antimicrobial polymer nanofiber for application in filter media. This objective was achieved via coaxial electrospinning of poly[styrene‐coN‐(N′,N′‐dimethyl‐3‐aminopropyl)maleimide] as the sheath which is an antimicrobial polymer and nylon 6 polymer for the core which is well reported for exceptional mechanical properties. Extensive characterization of these fibers was performed using scanning electron microscopy, scanning transmission electron microscopy, confocal fluorescence microscopy as well as attenuated total reflectance Fourier transform spectroscopy to provide evidence of the core‐sheath morphology. Antimicrobial evaluation was also carried out on the fabricated fibers via the live/dead fluorescence technique. This was done to determine if the poly[styrene‐coN‐(N′,N′‐dimethyl‐3‐aminopropyl)maleimide] retained its antimicrobial activity. The fibers were found to be effective against the Gram‐positive Staphylococcus aureus (ATCC25925) and Gram‐negative Pseudomonas aeruginosa (ATCC27853). Subsequent tensile testing and filtration experiments provided evidence that the incorporation of the nylon core improved mechanical properties of the nanofiber mats. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46303.  相似文献   

7.
A novel ion‐imprinted membranes were synthesized for selective removal and preconentration for Ag(I) ions from aqueous solutions. The membranes were obtained via crosslinking of chitosan (CS), PVA, and blend chitosan/PVA using glutaraldehyde (GA) as crosslinker. The FTIR spectra were used to confirm the membrane formation. Comparing with the nonimprinted membranes, Ag(I)‐imprinted CS and CS/PVA has higher removal capacity and selectivity for Ag+ ions. An enhancement in the Ag+ removal capacity by ~ 20% (from 77.8 to 94.4 mg g–1) and ~ 50% (from 83.9 to 125 mg g–1) was found in the Ag(I)‐imprinted CS and Ag(I)‐imprinted CS/PVA membranes, respectively, when compared with the nonimprinted membranes. Removal equilibra was achieved in about 40 min for the non‐ and ion‐imprinted CS/PVA. The pH and temperature significantly affected the removal capacity of ion‐imprinted membrane. The relative selectivity coefficient values of Ag+/Cu2+ and Ag+/Ni2+ are 9 and 10.7 for ion‐imprinted CS membrane and 11.1 and 15 for ion‐imprinted CS/PVA membrane when compared with nonimprinted membranes. The imprinted membranes can be easily regenerated by 0.01M EDTA and therefore can be reused at least five times with only 15% loss of removal capacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Poly(vinyl alcohol) (PVA)/chitosan (CS)/graphene oxide (GO) biocomposite nanofibers have been successfully prepared using aqueous solution by electrospinning. CS colloidal gel in 1% acetic acid can be changed to homogeneous solution by using electron beam irradiation (EBI). The uniform distributions of GO sheets in the nanofibers were investigated by field emission scanning electron microscopy (FESEM) and Raman spectroscopy. FESEM images illustrated that the spread single GO sheet embedding into nanofibers was formed via self-assembly of GO sheet and PVA/CS chains. And the average diameters of the biocomposite nanofibers decreased (200, 173, 160 and 123 nm) with increasing the contents of GO (0.05, 0.2, 0.4 and 0.6 wt%). Raman spectra verified the presence of GO in the biocomposite nanofibrous mats. The mechanical properties of as-prepared materials related with GO contents. It revealed that the highest tensile strength was 2.78 MPa, which was 25% higher than that of neat PVA/CS nanofibers. Antibacterial test demonstrated that the addition of GO to PVA/CS nanofiber had great ability to increase inhibition zone till 8.6 mm. Overall, these features of PVA/CS/GO nanofibers which were prepared by eco-friendly solvent can be a promising candidate material in tissue engineering, wound healing and drug delivery system.  相似文献   

9.
A zwitterionic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane for resistance to bacteria and protein adsorption was fabricated by the atom transfer radical polymerization of sulfobetaine methacrylate (SBMA). The PVA‐co‐PE nanofiber membrane was first surface‐activated by α‐bromoisobutyryl bromide, and then, zwitterionic SBMA was initiated to polymerize onto the surface of nanofiber membrane. The chemical structures of the functionalized PVA‐co‐PE nanofiber membranes were confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The morphologies of the PVA‐co‐PE nanofiber membranes were characterized by scanning electron microscopy. The results show that the poly(sulfobetaine methacrylate) (PSBMA) was successfully grafted onto the PVA‐co‐PE nanofiber membrane, and the surface of the nanofiber membrane was more hydrophilic than that of the pristine membrane. Furthermore, the antibacterial adsorption properties and resistance to protein adsorption of the surface were investigated. This indicated that the PSBMA‐functionalized surface possessed good antibacterial adsorption activity and resistance to nonspecific protein adsorption. Therefore, this study afforded a convenient and promising method for preparing a new kind of soft and nonwoven dressing material with antibacterial adsorption and antifouling properties that has potential use in the medical field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44169.  相似文献   

10.
Antibacterial polycaprolactone (PCL) electrospun fiber mats were prepared by coelectrospinning PCL with soluble eggshell membrane protein (SEP) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP), followed by adsorption of silver nanoparticles (Ag NPs) through hydrogen‐bonding interaction between the amide groups of SEP and the carboxylic acid groups capped on the surfaces of Ag NPs. The PCL/SEP fiber mat was characterized by X‐ray photoelectron spectroscopy, indicating the presence of some SEP on the fiber surface. The adsorption of Ag NPs was confirmed by transmission electron microscopy and quantitatively characterized by thermogravimetric analysis. The pH value of the silver sol used for adsorption is very important in view of the amount and dispersion state of Ag NPs adsorbed on the fibers. The Ag NP–decorated PCL/SEP fiber mats prepared at pH 3–5 exhibit strong antibacterial activity against both gram‐negative Escherichia coli and gram‐positive Bacillus subtilis. Antibacterial PCL fiber mats were also obtained similarly with the assistance of collagen (another protein) instead of SEP, showing that protein‐assisted adsorption of Ag NPs is a versatile method to prepare antibacterial electrospun fiber mats. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43850.  相似文献   

11.
Graphene nanosheets (GNSs) have attracted significant scientific attention because of their remarkable features, including exceptional electron transport, excellent mechanical properties, high surface area, and antibacterial functions. Poly(vinyl alcohol) (PVA) solutions filled with GNSs were prepared for electrospinning, and their spinnability was correlated with their solution properties. The effects of GNS addition on solution rheology and conductivity were investigated. The as‐spun fibers were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC). The results revealed the effects of GNS on the microstructure, morphology, and crystallization properties of PVA/GNS composite nanofibers. The addition of GNSs in PVA solution increased the viscosity and conductivity of the solution. The electrospun fiber diameter of the PVA/GNS composite nanofiber was smaller than that of neat PVA nanofiber. GNSs were not only embedded at the fibers but also formed protrusions on the fibers. In addition, the crystallinity of PVA/GNS fiber decreased with higher GNS content. The possible application of PVA/GNS fibers in tissue engineering was also evaluated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41891.  相似文献   

12.
Poly(vinylidene fluoride) (PVDF) nanofibrous mats containing silver nanoparticles were prepared by electrospinning. The diameter of the nanofibers ranged between 100 and 300 nm, as revealed by scanning electron microscopy. The silver nanoparticles were dispersed, but some aggregation was observed with transmission electron microscopy. The content of silver nanoparticles incorporated into the PVDF nanofibrous mats was determined by inductively coupled plasma and X‐ray photoelectron spectroscopy. The antibacterial activities of the samples were evaluated with the colony‐counting method against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. The results indicate that the PVDF nanofibrous mats containing silver nanoparticles showed good antibacterial activity compared to the PVDF nanofiber control. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Green chemical method could be a promising route to achieve large scale synthesis of nanostructures for biomedical applications. Here, we describe a green chemical synthesis of silver nanoparticles (Ag NPs) on chitosan‐based electrospun nanofibers using Eucalyptus leaf extract. A series of silver salt (AgNO3) amounts were added to a certain composition of chitosan/polyethylene oxide aqueous acetic acid solution. The solutions were then electrospun to obtain nanofibrous mats and then, morphology and size of nanofibers were analyzed by scanning electron microscopy (SEM). Incubation of AgNO3‐containing mats into Eucalyptus leaf extract led to the formation of Ag NP clusters with average diameter of 91 ± 24 nm, depicted by SEM and transmission electron microscopy. Surface enhanced Raman spectroscopy also confirmed formation of Ag NPs on the nanofibers. The mats also showed antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria with bigger inhibition zone for extract‐exposed mats against S. aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42133.  相似文献   

14.
Propolis as a natural antibacterial agent was incorporated into the poly(vinyl alcohol) (PVA) in different forms of nanofiber, microfiber, and film. The successful fabrication of uniform nanofibers with 85–314 nm diameters and microfibers with 2.02 μm diameter was proved by scanning electron microscopy. Structural analysis by Fourier transform infrared spectroscopy and X‐ray diffraction and swelling properties confirmed the formation PVA hydrogel and its H‐bonding to the propolis. Evaluation and comparison of antimicrobial properties of produced samples against Staphylococcus aureus strains revealed that nanofiber mat with 19 mm inhibition zone has 11.76 and 26.67% higher efficiency against bacteria than microfiber mat and film with 17 and 15 mm inhibition zone, respectively. Nanofibrous mat showed sustained release during 96 h by maintaining full antibacterial activity up to 51 h which is of great importance in burn wounds. These results confirm the advanced performance of natural propolis in the form of nanofiber substrate as wound dressing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45794.  相似文献   

15.
Poly(vinyl alcohol) (PVA) nanofiber mats were collected on indium tin oxide (ITO) substrate by electrospinning method. A multilayer film composed of α-[P2W18O62]6− (abbr. P2W18), a polyoxometallate (POM) anion, and poly(diallymethylammonium chloride) (abbr. PDDA) was fabricated by layer-by-layer (LBL) self-assembly technique on the PVA/ITO electrode. The PDDA/P2W18 multilayer film could be unselectively or selectively deposited on the PVA/ITO electrode via changing the amount of PVA nanofibers on the ITO substrate. The scanning electron microscope (SEM) images showed that when the electrospun time was short the PDDA/P2W18 multilayer film was unselectively deposited on PVA nanofiber mats because the amount of PVA nanofibers was too little to cover most of the ITO substrate. However, when the electrospun time was long enough, the PDDA/P2W18 multilayer film was selectively deposited on PVA nanofiber mats because of the larger surface area and higher surface energy of PVA nanofibers in comparison with the flat ITO substrate. Growth process of the multilayer film was determined by cyclic voltammetry (CV). Electrocatalytic effects of the PDDA/P2W18 multilayer film unselectively and selectively deposited on the PVA/ITO electrode on NO2 were observed.  相似文献   

16.
The development of bioprecursor polyimide/Ag nanocomposites (PI/Ag NCs) is reported in this investigation. Semiaromatic bioprecursor PI was successfully synthesized through direct polycondensation reaction between aromatic diamine containing pyridine ring and aliphatic dianhydride. Aromatic diamine as a monomer was synthesized using a renewable resource, vanillin. The main attractive aspects of this PI are the renewable origin of the diamine, presence of pyridine and high aromatic rings content, as well as aliphatic content on the polymer backbone. The structure of synthesized monomer and PI were proven by FTIR, and nuclear magnetic resonance. The PI/Ag NCs containing 3, 5, and 7 wt % of Ag nanoparticles (Ag NPs) were prepared through solution technique and the resulting NCs were characterized by Fourier transform infrared spectra, wide angle X‐ray diffraction, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). TEM results showed that the Ag NPs were dispersed homogeneously in the PI matrix on nanoscale. TGA results indicated improving in thermal properties of PI/Ag NCs compared to the neat PI due to the interaction between the PI matrix and the Ag NPs. Antibacterial activity of PI/Ag NCs was tested by the disk diffusion method using Escherichia coli as model strain of gram‐negative bacteria. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44001.  相似文献   

17.
Chitosan/Ag–montmorillonite (CS/Ag–MMT) nanocomposite was obtained via solution intercalation. The X‐ray diffraction and transmission electron microscopy results indicated the successful formation of intercalated‐and‐exfoliated nanostructures at low Ag–MMT contents and intercalated‐and‐flocculated nanostructures at high Ag–MMT contents. The CS/Ag–MMT nanocomposite with 7 wt% Ag–MMT presented a very high inhibition ratio against Staphylococcus aureus (>70%), and its bacterial inhibition zone diameter was 3.2 mm larger than that of CS, which showed remarkable antibacterial activity. When the Ag–MMT content was 5 wt%, the E′ of CS/Ag–MMT was increased to 3,261 MPa, which was 195% higher than CS and exhibited excellent mechanic property. The DMA test results showed the Tg of CS/Ag–MMT shifted to a higher temperature, suggesting the Ag–MMT interlayer not only interacted quite strongly with the reactive groups of CS but also restricted the motion of CS macromolecules, which was also verified by Fourier transform infrared spectrum measurements. POLYM. COMPOS., 35:1980–1988, 2014. © 2014 Society of Plastics Engineers  相似文献   

18.
The poor mechanical and antibacterial performance has become a big hurdle for extending the application of polyelectrolyte complex (PEC) nanofibers in various fields. In this study, chitosan/gelatin (CG) composite nanofiber system was used for portraying the synergistic enhancement of mechanical and antibacterial properties of PEC nanofiber membranes by inclusion of graphene oxide‐silver (GO‐Ag) nanofillers. In particular, the introduction of 1.5 wt % GO‐Ag has raised the elastic modulus and tensile strength of CG nanofiber membrane by 105% and 488%, respectively, which are partially attributed to the alleviated restacking of graphene sheets by the anchored AgNPs. Meanwhile, the diameters of inhibition zone against Escherichia coli and Staphylococcus aureus on LB‐agar plates induced by GO‐Ag/CG nanofiber membranes are increased by 80.5% and 50.1%, respectively, compared to that by CG membrane. The synergistic improvement of antimicrobial performance of GO‐Ag/CG may be related to the accumulation of microorganisms induced by GO. In summary, the incorporation of GO‐Ag composite nanofillers has emerged as an effective strategy for engineering PEC nanofiber membranes for potential applications in nanomedicine and tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46238.  相似文献   

19.
In this study, a fabricated hydrophilic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane was used as the middle support layer to prepare thin film composite (TFC) membranes for nanofiltration. The effects of the supporting nonwoven layer, grams per square meter (GSM) of nanofiber, reaction time, heat treatment, monomer concentration, operating pressure, and pH value on the separation performance of the TFC membranes were analyzed. These results show that the TFC membranes prepared with the PVA‐co‐PE nanofiber membrane can be used to filtrate different metal ions. For NaCl, Na2SO4, CaCl2, CuCl2, CuSO4, and methyl orange solutions, the rejection rates of the TFC membrane with nonwoven polyester as the supporting layer and a nanofiber GSM of 12.8 g/m2 are 87.9%, 93.4%, 92.0%, 93.1%, 95.8%, and 100%, respectively. This indicates the potential application of the PVA‐co‐PE nanofiber membrane in the preparation of nanofiltration and reverse‐osmosis TFC membranes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46261.  相似文献   

20.
The nano‐ZnO and nano‐TiO2 were added into chitosan (CS) anion layer to prepare polyvinyl alcohol (PVA) ‐ sodium alginate (SA)/ TiO2‐ZnO‐CS (here, PVA:polyvinyl alcohol; SA:sodium alginate) bipolar membrane (BPM), which was characterized using scanning electron microscopy, atomic force microscopy (AFM), thermogravimetric analysis (TG), electric universal testing machine, contact angle measurer, and so on. Experimental results showed that nano‐TiO2‐ZnO exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano‐TiO2 or nano‐ZnO. The membrane impedance and voltage drop (IR drop) of the BPM were obviously decreased under the irradiation of high‐pressure mercury lamps. At a current density of 60 mA/cm2, the cell voltage of PVA‐SA/TiO2‐ZnO‐CS BPM‐equipped cell decreased by 1.0 V. And the cell voltages of PVA‐SA/TiO2‐CS BPM‐equipped cell and PVA‐SA/ZnO‐CS BPM‐equipped cell were only reduced by 0.7 and 0.6 V, respectively. Furthermore, the hydrophilicity, thermal stability, and mechanical properties of the modified BPM were increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号