首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel silicone‐containing flame retardant (HSOBA) synthesized from hydrogen‐containing silicone oil and Bisphenol A via a simple approach has been incorporated into polycarbonate (PC) matrix to study its effects on the flame retardancy. The flame retardancy of PC/HSOBA composites is investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter measurement. The LOI value of the composites is 31.7 and the UL‐94 rating reaches V‐0, when the content of HSOBA is 3 wt %. Cone calorimeter data confirm that the HSOBA acts as an effective additive functioning both as flame retardants and as smoke suppressant. Evolution of the thermal behaviors of the composites tested by TGA, the morphological structures, and the constituent of char residue after LOI tests characterized by scanning electronic microscopy‐energy‐dispersive X‐ray analysis were used to explain the possible flame‐retardant mode. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A novel and highly effective flame retardant (FR), DOPO‐TPMP oligomer, was synthesized by a simple condensation of 4‐(hydroxymethyl)‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐1‐oxide and phosphorus oxychloride followed by a polycondensation reaction with 6‐(2,5‐dihydroxyphenyl)‐6H‐dibenzo[c,e][1,2]oxaphosphinine‐6‐oxide. The chemical structure of DOPO‐TPMP was well characterized using Fourier transform infrared and NMR spectra. DOPO‐TPMP was used as an additive‐type FR for epoxy resin (EP). The FR properties of the resultant EP composites were investigated by limiting oxygen index (LOI) test, UL‐94 vertical burning test and cone calorimeter measurements. Specifically, the EP composite containing 10.0% DOPO‐TPMP achieved a LOI value of 36.1%, V‐0 rating in the UL‐94 test and a 58% reduction in peak heat release rate. Further mechanism analysis attributed the enhanced flame retardancy to the increased char yield on the addition of DOPO‐TPMP. © 2019 Society of Chemical Industry  相似文献   

3.
Novel phosphorus‐containing and nitrogen‐containing intumescent flame retardants, bis‐aminobenzyl spirocylic pentaerythritol bisphosphonate (BASPB) and arylene‐N,N′‐bis(2,2‐dimethyl‐1,3‐propanediol phosphoramidate) (ABDPP), were synthesized, and their structures were characterized with Fourier transform infrared spectroscopy and 1H and 31P nuclear magnetic resonance. The phosphorus compounds were used to impart flame retardancy to polycarbonate (PC). Combustion behaviors and thermal degradation properties of the flame‐retarded‐PC composites were assayed by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. PC/5 wt.% BASPB and PC/5 wt.% ABDPP composites passed UL‐94 V‐0 rating; their LOI values were 35.5% and 34.7%, respectively. Scanning electron microscopy revealed that the char properties had crucial effects on the flame retardancy. The mechanical properties and water resistance of the PC/BASPB and PC/ABDPP composites were also measured. After water resistance test, PC/5 wt.% BASPB and PC/5 wt.% ABDPP composites kept V‐0 rating, and the mass loss was only 1.0%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The pyrolysis and flammability of phosphonium‐modified layered silicate epoxy resin nanocomposites (EP/LS) were evaluated when LS was combined with two flame retardants, melamine borate (MB) and ammonium polyphosphate (APP), that also act via a surface protection layer. Thermogravimetry (TG), TG coupled with Fourier Transform Spectroscopy (TG‐FTIR), oxygen index (LOI), UL 94 burning chamber (UL 94) and cone calorimeter were used. The glassy coating because of 10 wt % MB during combustion showed effects in the cone calorimeter test similar to nanodispersed LS, and somewhat better flame retardancy in flammability tests, such as LOI and UL 94. Adding APP to EP resulted in intumescent systems. The fire retardancy was particularly convincing when 15 wt % APP was used, especially for low external heat flux, and thus, also in flammability tests like LOI and UL 94. V0 classification is achieved when 15 wt % APP is used in EP. The flame retardancy efficiency of the protection layers formed does not increase linearly with the MB and APP concentrations used. The combination of LS with MB or APP shows antagonism; thus the performance of the combination of LS with MB or APP, respectively, was disappointing. No optimization of the carbonaceous‐inorganic surface layer occurred for LS‐MB. Combining LS with APP inhibited the intumescence, most probably through an increase in viscosity clearly above the value needed for intumescent behavior. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Composites of ultrafine polyhedral oligomeric octaphenyl silsesquioxane (OPS) and polycarbonate (PC) were prepared by melt blending. The mechanical and thermal properties of the composites were characterized by tensile and flexural tests, impact test, differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). Rheological properties of these melts were tested by torque rheometer. The flame retardancy of the composites was tested by limiting oxygen index (LOI), the vertical burning (UL‐94), and cone calorimeter test. The char residue was characterized by scanning electron microscope (SEM) and ATR‐FTIR spectrum. Furthermore, the dispersion of OPS particles in the PC matrix was evidenced by SEM. The results indicate that the glass transition temperatures (Tg) and torque of the composites decrease with increasing OPS loading. The onset decomposition temperatures of composites are lower than that of PC. The LOI value and UL‐94 rating of the PC/OPS composites increase with increasing loading of OPS. When OPS loading reaches 6 wt %, the LOI value is 33.8%, UL‐94 (1.6 mm) V‐0 rating is obtained, and peak heat release rate (PHRR) decreases from 570 to 292 kJ m?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
The effect of percolation and catalysis of bamboo‐based active carbon (BAC) on the thermal degradation and flame retardancy of ethylene vinyl‐acetate rubber (EVM) composites with intumescent flame retardants (IFR) consisting of ammonium polyphosphate (APP) and dipentaerythritol (DPER) has been investigated. The vulcanization characteristics were analyzed by a moving die rheometer. Thermogravimetric analysis (TGA) and fire behavior tests such as limiting oxygen index (LOI), vertical burning (UL 94), and cone calorimetry were used to evaluate the thermal properties and flame retardancy of EVM composites. Scanning electron microscopy (SEM) was used to study the morphology of residues of EVM composites. The addition of BAC significantly increased the maximum torque (MH) of EVM composites and EVM matrices. The combination of IFR with BAC can improve the thermal stability of EVM composites. Moreover, BAC can enhance char residue and promote the formation of a network for IFR. The current EVM/37IFR/3BAC composite achieved an LOI of 33.6% and a UL 94 V‐0 rating. The PHRR, total heat release (THR), and total smoke release (TSR) for EVM/IFR/BAC were greatly reduced as compared to EVM/40IFR. Also, the mechanical properties of the EVMIFR/BAC composites increased with increasing BAC contents. The physical percolation effect between BAC and EVM before and after thermal degradation, and the chemical catalysis effect between BAC and IFR during thermal degradation are responsible for the improved flame retardancy of EVM composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42414.  相似文献   

7.
Ammonium polyphosphate (APP)–polystyrene (PSt) core–shell microspheres (CSPs) were synthesized via in situ radical polymerization. The core–shell structure was confirmed by transmission electron microscope (TEM). The results of optical contact angle measurements demonstrated a significant improvement in hydrophobicity of the modified APP. The obtained APP–PSt CSPs were added into epoxy (EP) system with various loadings. Effects of CSP on flame retardancy, thermal properties, heat release rate (HRR), smoke production, and mechanical properties of EP/CSP composites were investigated by limiting oxygen index (LOI), UL‐94 tests, thermogravimetric analysis (TGA), cone calorimeter, and tensile test. LOI and UL‐94 indicated that CSP remarkably improved the flame retardancy of EP composites. TGA showed that the initial decomposition temperature and the maximum‐rate decomposition temperature decreased, whereas residue yields at high temperature increased with the incorporation of microspheres. Cone calorimetry gave evidence that HRR, peak release rate, average HRR, and smoke production rate of EP/CSP composites decreased significantly. The morphology of char residues suggested that CSP could effectively promote EP to form high‐quality char layer with compact outer surface and swollen inner structure. Tensile strength of EP was enhanced with the addition of CSP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40218.  相似文献   

8.
In this article, a novel flame retardant (coded as BNP) was successfully synthesized through the addition reaction between triglycidyl isocyanurate, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and phenylboronic acid. BNP was blended with diglycidyl ether of bisphenol‐A to prepare flame‐retardant epoxy resin (EP). Thermal properties, flame retardancy, and combustion behavior of the cured EP were studied by thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the flame retardancy and smoke suppressing properties of EP/BNP thermosets were significantly enhanced. The LOI value of EP/BNP‐3 thermoset was increased to 32.5% and the sample achieved UL94 V‐0 rating. Compared with the neat EP sample, the peak of heat release rate, average of heat release rate, total heat release, and total smoke production of EP/BNP thermosets were decreased by 58.2%–66.9%, 27.1%–37.9%, 25.8%–41.8%, and 21.3%–41.7%, respectively. The char yields of EP/BNP thermosets were increased by 46.8%–88.4%. The BNP decomposed to produce free radicals with quenching effect and enhanced the charring ability of EP matrix. The multifunctional groups of BNP with flame retardant effects in both gaseous and condensed phases were responsible for the excellent flame retardancy of the EP/BNP thermosets. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45291.  相似文献   

9.
In this study, thermoplastic poly(ester ether) elastomer (TPEE) nanocomposites with phosphorus–nitrogen (P–N) flame retardants and montmorillonite (MMT) were prepared by melt blending. The fire resistance of the nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL 94) tests. The results show that the addition of the P–N flame retardants increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants only obtained a UL 94 V‐2 ranking; this resulted in a flame dripping phenomenon. On the other hand, TPEE containing the P–N flame retardant and organically modified montmorillonite (o‐MMT) achieved better thermal stability and good flame retardancy; this was ascribed to its partially intercalated structure. The synergistic effect and synergism were investigated by Fourier transform infrared spectroscopy and thermogravimetry. The introduction of o‐MMT decreased the inhibition action of the P–N flame retardant and increased the amount of residues. The catalytic decomposition effect of MMT and the barrier effect of the layer silicates are discussed in this article. The residues after heating in the muffle furnace were analyzed by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and laser Raman spectroscopy. It was shown that the intercalated layer silicate structure facilitated the crosslinking interaction and promoted the formation of additional carbonaceous char residues in the formation of the compact, dense, folded‐structure surface char. The combination of the P–N flame retardant and o‐MMT in TPEE resulted in a better thermal stability and fire resistance because of the synergistic effect of the mixture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41094.  相似文献   

10.
Graphene nanoplatelets (GNPs) with the char barrier effect were combined with brominated polystyrene (BPS) and antimony trioxide (Sb2O3) to improve the flame retardancy and thermal stability of high‐density polyethylene. Thermogravimetric analysis, limited oxygen index (LOI) testing, and vertical burning testing (UL‐94) showed that the presence of GNPs led to enhanced thermal oxidation stability and significantly reduced the flammability. The addition of 1 wt % GNPs to polyethylene/BPS–Sb (mass ratio = 92/6/2) led to UL‐94 grades from NG (first burning time > 30 s) to V‐2 (total burning time = 14 s), and the LOI value increased from 23.4 to 24.1%. The results of the pyrolysis products provided evidence that the GNPs restricted volatilization. The morphology of the chars also proved the formation of the char layer, which could act as a barrier to isolate the material from the flame and retard the vaporization of flammable gases via a tortuous pathway. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40520.  相似文献   

11.
A novel macromolecular silicon‐containing intumescent flame retardants (Si‐IFR) was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus‐silicon characterized by IR. Epoxy resins (EP) were modified with Si‐IFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). Twenty percentage of weight of Si‐IFR was doped into EP to get 27.5% of LOI and UL 94 V‐0. The degradation behavior of the flame retardant EP was studied by thermogravimetry, differential thermogravimetry, scanning electron microscopy, and X‐ray photoelectron spectroscopy analysis. The experimental results exhibited that when EP/Si‐IFR was heated, the phosphorus‐containing groups firstly decompose to hydrate the char source‐containing groups to form a continuous and protective carbonaceous char, which changed into heat‐resistant swollen char by gaseous products from the nitrogen‐containing groups. Meanwhile, SiO2 reacts with phosphate to yield silicophosphate, which stabilizes the swollen char. The barrier properties and thermal stability of the swollen char are most effective in resisting the transport of heat and mass to improve the flame retardancy and thermal stability of EP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A novel halogen‐free flame‐retardant composite consisting of an intumescent flame retardant (IFR), oil‐filled styrene–ethylene–butadiene–styrene block copolymer (O‐SEBS), and polypropylene (PP) was studied. On the basis of UL‐94 ratings and limiting oxygen index (LOI) data, the IFRs consisted of a charring–foaming agent, ammonium polyphosphate, and SiO2 showed very effective flame retardancy and good water resistance in the IFR O‐SEBS/PP composite. When the loading of IFR was only 28 wt %, the IFR–O‐SEBS/PP composite could still attain a UL‐94 V‐0 (1.6 mm) rating, and its LOI value remained at 29.8% after a water treatment at 70°C for 168 h. Thermogravimetric analysis data indicated that the IFR effectively enhanced the temperature of the main thermal degradation peak of the IFR–O‐SEBS/PP composites because of the formation of abundant char residue. The flammability parameters of the composites obtained from cone calorimetry testing demonstrated that water treatment almost did not affect the flammability behavior of the composite. The morphological structures of the char residue and fractured surfaces of the composites were not affected by the water treatment. This was attributed to a small quantity of IFR extracted from the composite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39575.  相似文献   

13.
Pentaerythritol phosphate melamine salt (PPMS) as a single‐molecule intumescent fire retardant was synthesized and characterized. The influence of the PPMS content on the combustion and thermal decomposition processes of intumescent‐flame‐retardant (IFR) ethylene–vinyl acetate copolymer (EVA) composites was studied by limiting oxygen index (LOI) measurement, UL 94 rating testing, cone calorimetry, thermogravimetric analysis, and scanning electron microscopy. The LOI and UL 94 rating results illustrate that PPMS used in EVA improved the flame retardancy of the EVA composites. The cone calorimetry test results show that the addition of PPMS significantly decreased the heat‐release rate, total heat release, and smoke‐production rate and enhanced the residual char fire performance of the EVA composites. The IFR–EVA3 composite showed the lowest heat‐release and smoke‐production rates and the highest char residue; this means that the IFR–EVA3 composite had the best flame retardancy. The thermogravimetry results show that the IFR–EVA composites had more residual char than pure EVA; the char residue yield increased with increasing PPMS content. The analysis results for the char residue structures also illustrated that the addition of PPMS into the EVA resin helped to enhance the fire properties of the char layer and improve the flame retardancy of the EVA composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42148.  相似文献   

14.
Mg–Al–Fe ternary hydrotalcites were synthesized by a coprecipitation method and characterized with powder X‐ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The flame‐retardant effects of Mg/Al–CO3 layered double hydroxides (LDHs) and Mg/Al/Fe–CO3 LDHs in an ethylene/vinyl acetate copolymer (EVA) were studied with the limited oxygen index (LOI), the UL‐94 test, and the cone calorimeter test (CCT), and the thermal degradation behavior of the composites was examined by thermogravimetric analysis. The results showed that the LOI values of the EVA/(Mg/Al/Fe–CO3 LDH) composites were basically higher than those of the EVA/(Mg/Al–CO3 LDH) composites at the same additive level. In the UL‐94 test, there was no rating for the EVA/(Mg/Al–CO3 LDH) composite at the 50% additive level, and a dripping phenomenon occurred. However, the EVA/(Mg/Al/Fe–CO3 LDH) composites at the same loading level of LDHs containing a suitable amount of Fe3+ ion reached the V‐0 rating, the dripping phenomenon disappearing. The CCTs indicated that the heat release rate (HRR) of the EVA composites with Mg/Al/Fe–CO3 LDHs containing a suitable amount of Fe3+ decreased greatly in comparison with that of the composites with Mg/Al–CO3 LDHs. The introduction of a given amount of Fe3+ ion into Mg/Al–CO3 LDHs resulted in an increase in the LOI, a decrease in the HRR, and the achievement of the UL‐94 V‐0 rating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Ammonium polyphosphate (APP) was modified using a new method, where the resulting modified APP (MAPP) was obtained by mixing APP with unsaturated polyester resin (UPR). MAPP was more effective in improving the flame retardancy of UPR than APP which was due to the improved dispersion of MAPP in UPR composite. Then, the UPR composites were prepared based on dimethyl methylphosphonate, MAPP, montmorillonite, and zinc borate. Finally, the flame-retardant and mechanical properties of the UPR composites were analyzed using the limited oxygen index (LOI), thermogravimetric analysis, UL-94 vertical burning test, scanning electron microscopy, cone calorimetry, mechanical tests, and viscosity measurements. The LOI and UL-94 tests showed that the flame-retardant properties clearly improved with the addition of fillers in the UPR composites compared to pristine UPR. The synergistic effect of Si- and P-containing flame retardants in this composite resulted in the LOI value increasing from 18.9 to 31.3% and achieved the UL-94 V-0 rating. Moreover, the heat release rate was lower than the pristine UPR. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47180.  相似文献   

16.
In this study, phospholipidated β‐cyclodextrin (PCD) was obtained by the condensation between β‐cyclodextrin and phenyl phosphonic acid dichloride, which was characterized by Fourier transform infrared (FTIR) spectra, 1H‐NMR, and thermogravimetric analysis (TGA). The thermal stability and flame retardancy of the poly(lactic acid) (PLA) blends [PLA–ammonium polyphosphate (APP)–PCD] were measured by TGA coupled to FTIR spectroscopy, vertical burning test (UL‐94), limiting oxygen index (LOI), and cone calorimetry tests. The results show that the mass ratio and loading amount of APP and PCD affected the properties of PLA. When the loading of APP and PCD was 30 wt % and the mass ratio of APP to PCD was 5:1, the highest LOI value of 42.6% (that of neat PLA was 19.7%) and a UL‐94 V0 rating were achieved, and the reduction of the total heat release was greater than 80%. Even when the total amount of APP and PCD was decreased to 20 wt % with the same mass ratio, the flame‐retardant PLA still can achieved a UL‐94 V0 rating. The improved performance was explained by the formation of an intumescent, continuous, contact char layer. Moreover, the reaction between APP and PCD contributed to the improvement of the thermal stability of the char residue. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46054.  相似文献   

17.
In general, epoxy resin (EP) glue mixed with a high content of flame retardants is used to coat glass fabrics layer by layer to prepare fire‐retardant printed circuit boards (PCBs). However, the addition of the flame retardants not only increases the cost but also greatly deteriorates the processability and mechanical properties of the PCBs. In this study, a gradient distribution mode of composite flame retardants was designed and applied in EP‐based PCB composites. Unlike the traditional uniform distribution mode, in which flame retardants are evenly distributed in every resin layer, the gradient mode concentrates a higher content of the flame retardants on the surface layer, and the concentrations are gradually reduced along the thickness. In this way, the surface resin can quickly form a condensed charring barrier to hold back fire; this effectively protects the underlying resin, which has lower contents of flame retardant. The results of this study show that PCB prepared by the gradient mode obtained satisfactory flame retardance (a UL94 V‐0 rating) with only a 3.5 wt % total amount of flame retardant; this value was much lower than that (6.3 wt %) of composites featuring a uniform distribution. Additionally, the gradient mode also maintained the mechanical properties of PCB better. The tensile, impact, and flexural strengths of the gradient distribution system were obviously higher than those of the uniform distribution one with the same content of flame retardant. On the basis of the mode, a more economic and efficient technology was developed to manufacture flame‐retardant layered PCB. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44369.  相似文献   

18.
A novel phosphonate flame retardant additive bis(2,6‐dimethyphenyl) phenylphosphonate (BDMPP) was synthesized from phenylphosphonic dichloride and 2,6‐dimethyl phenol, and its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 31P nuclear magnetic resonance. The prepared BDMPP and curing agent m‐phenylenediamine were blended into epoxy resins (EP) to prepare flame retardant EP thermosets. The effect of BDMPP on fire retardancy and thermal degradation behavior of EP/BDMPP thermosets was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter and thermalgravimetric analysis (TGA). The morphologies of char residues of the EP thermosets were investigated by scanning electron microscopy (SEM) and the water resistant properties of thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the cured EP/14 wt % BDMPP composites with the phosphorus content of 1.11 wt % successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.8%. The TGA results indicated that the introduction of BDMPP promoted EP matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield at high temperature. The incorporation of BDMPP enhanced the mechanical properties and reduced the moisture absorption of EP thermosets. The morphological structures of char residue revealed that BDMPP benefited to the formation of a more compact and homogeneous char layer on the materials surface during burning, which prevented the heat transmission and diffusion, limit the production of combustible gases and then lead to the reduction of the heat release rate. After water resistance tests, EP/BDMPP thermosets still remained excellent flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42765.  相似文献   

19.
Amino trimethylene phosphonic acid melamine salt (MATMP) was synthesized and used as acid source and blowing agent in intumescent flame‐retarded polypropylene (PP); its compositions were characterized by Fourier transform infrared spectroscopy and X‐ray powder diffraction. An intumescent flame retardant (IFR) system composed of MATMP, pentaerythritol (PER), and PP was tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests, and thermogravimetric analysis and compared with an ammonium polyphosphate (APP)/PER system. The results showed that MATMP had better water resistance than APP, the LOI value of PP/MATMP/PER composite can reach 30.3%, and a UL‐94 V‐0 rating can be reached at 25 wt % IFR loading. The amount of residual char of IFR MATMP/PER was 20.3 and 9.5 wt % at 400 and 600 °C, respectively. A thermooxidative degradation route and a possible flame‐retardant mechanism of IFR were proposed according to the analysis of evolved gases and residual chars. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46274.  相似文献   

20.
This study presented a new way to prepare expandable graphite (EG), which is one kind of halogen‐free flame retardant using the H2O2‐hydrothermal process. Natural graphite was immersed in H2O2 and then put in autoclave to proceed the hydrothermal process. The EG was called as H2O2‐HEG from the H2O2‐hydrothermal process. The results showed that the expanded volume of EG using the H2O2‐hydrothermal process was higher than that compared with convectional liquid phase synthesis, ultrasound irradiation, and hydrothermal method. Fourier transform infrared spectroscopy, X‐ray diffraction patterns, scanning electron microscope, and X‐ray photoelectron spectroscopy were used to analyze the structure and confirm that the EG had been prepared. Thermogravimetric analysis presents that H2O2‐HEG can improve the thermal stability of composites. The cone calorimeter show that the peak heat release rate (HRR) values of composites decrease dramatically. Limiting oxygen index (LOI) value of H2O2‐HEG composites is higher than that of high‐density polyethylene (HDPE)/natural flake graphite. HDPE composites are capable of passing the V‐0 classification and have antidripping behavior. LOI, UL‐94, and the cone calorimeter results show that the HDPE/H2O2‐HEG composite possess excellent flame retardant property. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号