首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
赖明河  陈向标  陈海宏 《合成纤维》2013,42(1):30-33,42
介绍了静电纺丝的原理及利用静电纺丝方法制备天然高分子纳米纤维的最新研究进展,主要介绍了海藻酸钠、天然纤维素、透明质酸、明胶、胶原蛋白、甲壳素及其衍生物等几种主要的天然高分子静电纺纤维的研究进展,并指出它们在生物医学领域的重要应用。  相似文献   

2.
Electrospinning conditions were evaluated to prepare micro/nanofibers of a biodegradable poly(ester amide) constituted by L-alanine, 1,12-dodecanediol and sebacic acid. 1,1,1,3,3,3-Hexafluroroisopropanol appeared as the most appropriate solvent to obtain fibers in a wide range of electrospinning conditions that allowed tuning the final diameter size. Fiber diameter increased with the flow, distance between the needle tip and the collector and decreasing voltage, which made it possible to obtain homogeneous fibers in the 1700–320 nm range. Fibers were loaded with antimicrobial agents like silver and chlorohexidine, and the influence of agent concentration in the electrospinning solutions on the fiber diameter size was determined. The polymer was able to crystallize during the electrospinning process, giving rise to a structure slightly different from that obtained by solution crystallization and related to that attained after crystallization from the melt state. Addition of antimicrobial agents had little effect on the degree of crystallinity, although it decreased slightly when chlorhexidine was employed. Scaffolds prepared from the silver and chlorhexidine loaded samples supported cell adhesion and proliferation. Furthermore, a clear and well differentiated antimicrobial effect against both Gram-positive (e.g. M. luteus) and Gram-negative (e.g. E. coli) bacteria was demonstrated.  相似文献   

3.
In recent times, electrospun nanofibers have been widely studied from several biotechnological approaches; in this work, poly(acrylic acid) (PAA) solutions mixed with chitosan and alginate were electrospun and characterized to determine the behavior of these fibers when used in combination with bacteria, different samples were incubated with the bacterial strains: Streptomyces spp., Micromonospora spp., and Escherichia coli and a OD600 test was performed. The formation of nanofibers via electrospinning and the physicochemical properties of the obtained fibers were evaluated. Results showed that the presence of chitosan enhanced the thermal stability of PAA, since PAA/alginate fibers lost 5% of their mass at 41°C, whereas PAA/chitosan lost this amount at around 125°C. The fibers demonstrated suitable characteristics to be used as a bacteria bioreactor.  相似文献   

4.
Poly(lactic acid) (PLA) nanofibers, as a biodegradable and environmentally friendly material, have potential applications such as biological medicine, efficient filter material, and so on. PLA nanofibers are usually prepared by solution electrospinning method with toxic solvents, such as chloroform, chloromethane, and N,N‐dimethyl formamide. In this work, PLA nanofibers were fabricated with a self‐designed melt differential electrospinning device, assisted by addition of nontoxic acetyl tributyl citrate (ATBC) and by airflow. Molecular dynamics simulations were performed to understand the experimental results. The results revealed that the fiber diameter decreased with increasing airflow velocity, and fibers with a diameter as small as 236 nm were obtained at the highest airflow velocity of 25 m/s (with 6 wt % of ATBC). Furthermore, a significantly accelerated falling speed of the jets of about 347 times of that without airflow was achieved at a flow rate of 25 m/s. These results demonstrated that the combination of adding ATBC and airflow assistance was a good strategy to achieve finer fibers with improved stability and efficiency, making it a promising way for mass green production of PLA nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46554.  相似文献   

5.
Electrospinning solutions containing native silk fibrils with varied diameter and length were firstly achieved by dissolving silk in CaCl2/Formic acid solvents. The structure of nanofibrils significantly improved the spinnability of electrospinning solution. The diameter of electrospun silk fibroin (SF) nanofibers increased from 40 nm to 1.8 μm, which could be achieved through increasing the solution concentration from 2 to 10%, implying a good size control over a wide range in this process. The structure of SF nanofibers transferred from random coil to beta‐sheet, before and after ethanol treatment, respectively. The mechanical properties of the SF nanofibers were improved significantly with stress and strain at break of 11.15 MPa and 7.66% in dry state, and 3.32 MPa and 174.0% in wet state. The strategy for preparing SF nanofibers with improved mechanical properties and fiber diameter control over a wide range provides benefits for the application of this material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41236.  相似文献   

6.
Needleless electrospinning technology was an effective processing method which can fabricate large scale nanofibers. We first developed a novel double rings slit spinneret to overcome the shortcomings of current needleless electrospinning spinnerets. The solution of the flow rate was controlled accurately by peristaltic control pump. Response surface methodology was adopted to investigate the influence of the processing parameters on the morphology and diameter of nanofibers. The main spinning processing parameters comprised solution concentration, applied voltage, collection distance and solution flow rate. The analysis of variance was used to evaluate response surface reduced quadratic model for nanofiber diameter. The linear and quadratic coefficients were obtained. The morphology of nanofibers was observed by scanning electron microscopy. Effects of different processing parameters on the nanofiber mean diameter have been discussed. Predicated values have a good agreement with actual values for nanofiber diameter. Actual nanofiber diameter ranges from129.15 to 404.70 nm with different process parameters. Mechanical properties of nanofiber membrane have been investigated. High quality and high throughout nanofiber could be continuously produced. This novel needleless electrospinning spinneret has a great potential for large scale nanofibers production to promote electrospinning technology development. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46407.  相似文献   

7.
Most polymers that are electrospun are dissolved in a solvent and are spun at ambient temperature. Gelatin, a natural polymer, has excellent potential in medical applications as a biodegradable polymer, especially when combined with sodium alginate. Unfortunately, gelatin/water or gelatin/sodium alginate/water solutions cannot be electrospun at ambient temperature without the incorporation of substances that are considered potentially toxic to the human body, such as acetic acid. In this study, gelatin/water solutions with and without sodium alginate were successfully electrospun without the use of additional solvents by using heated water solutions. The effect of electrospinning parameters such as solution concentration and applied voltage on the nanofiber morphology of these solutions was studied. These nanofibers from heated gelatin/water solutions exhibited good morphology with an average size of 291 ± 67 nm at 18% concentration to 414 ± 52 nm at 20% concentration. Similar sizes were observed when sodium alginate was incorporated into the gelatin/water solutions, although the relationship was dependent upon the amount of sodium alginate in the solution as well as the total concentration. Typically, these nanofibers containing sodium alginate were produced at a lower gelatin concentration compared with the gelatin/water nanofibers because of the increase of viscosity and conductivity of the solutions due to the addition of the highly viscous and conductivity sodium alginate. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
Electrospinning is a direct, continuous, and useful technique to prepare nanofiber by applying electrostatic forces. In this study, poly(lactic‐co‐glycolic acid)/poly(ethylene glycol) (PLGA/PEG) nanofiber mats were prepared, and electrospinning process was optimized to obtain appropriate fiber diameter and hydrophilicity for anti‐adhesion application. Optimization of applied voltage, PEG content, and feeding rate was investigated using response surface methodology. A total of 15 trials were designed to optimize the parameters. Fiber diameter was measured using scanning electron microscopy. Individual and interactive effects of the solution properties were determined. Moreover, the adequacy of the models was verified by validation experiments. For anti‐adhesion test, a nanofiber mat was produced based on the suggested optimum electrospinning conditions. Results showed that optimum fiber diameters were obtained using 7.5% PEG content, applied voltage of 19 kV, and flow rate of 3 mL/h. Experimental results were in good agreement with the predicted fiber diameters. Furthermore, a rat model of sidewall defect‐cecum abrasion was employed to investigate the efficacy of PEG/PLGA in preventing postoperative peritoneal adhesions. Hence, this study provides an overview on the fabrication of PLGA/PEG nanofibers with targeted diameter, which may be used in anti‐adhesion. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46282.  相似文献   

9.
Natural silk, from Bombyx mori solutions were electrospun into nanofibers, with diameters ranged from 60 to 7000 nm. The effects of electrospinning temperature, solution concentration and electric field on the formation nanofibers were studied. Optical and scanning electron microscope were used to study the morphology and diameter of electrospun nanofibers. It was observed that the nanofibers became flattened with ribbon‐like shape with increasing the electrospinning temperature. The nanofiber diameter increases with the increase in the concentration of silk solution at all electrospinning temperature. With increasing the voltage of electric field at 50°C, morphology of the nanofibers changes from ribbon‐like structure to circular cross section. Referring to the literature the probable mechanism responsible for the change of morphology is pointed out. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
In recent years, there has been a significant focus on bioactive dressings suitable for treating chronic and acute wounds. Electrospinning nanofibers are considered advanced dressing options due to their high porosity and permeability to air and water, effective barrier properties against external pathogens, and excellent resemblance to the extracellular matrix for wound healing and skin regeneration. This article reviews the recent advancements in the application of electrospinning nanofibers for bioactive wound healing. The review begins with an overview of the wound healing process and electrospinning methods. It then explores the advantages and disadvantages of different synthetic and natural polymers used in the preparation of electrospinning wound dressings. The natural polymers discussed in this review include collagen, gelatin, silk fibroin, chitosan, hyaluronic acid, and sodium alginate. Additionally, the review delves into commonly used synthetic polymers like polyvinyl alcohol, polyvinyl chloride, polyethylene lactone, polylactide, and polyurethane for wound dressing applications. Furthermore, the review examines the blending of natural and synthetic polymers to create high-performance wound dressings. It also explores the incorporation of functional additives, such as antimicrobial agents, growth factors, and natural extracts, into electrospinning nanofibers to expedite wound healing and tissue repair. In conclusion, electrospinning is an emerging technology that provides unique opportunities for designing more effective wound dressings and care products.  相似文献   

11.
Polyacrylonitrile solutions in N,N‐dimethylformamide (DMF) were electrospun into nanofibers by charging the polymer fluid in an electric field. Controlled experiments were performed using a needle type spinneret to investigate the effect of various electrospinning parameters on the percentage conversion of polymeric fluid into fibers and on fiber diameter obtained. It was found that when the polymeric fluid was continuously fed at a constant rate, application of a minimum electrospinning voltage (MEV) was necessary to “completely” convert the ejected fluid into nanojets to form nanofibers. Also, that the maximum amount of splitting or elongation that a polymeric fluid could undergo was primarily dependent on number of entanglements per chain in the fluid. This resulted in obtaining nanofibers with a particular diameter irrespective of the values of important electrospinning variables such as applied voltage, flow rates, and distance between the electrodes. On the other hand, MEV, necessary to obtain full conversion into nanofibers, was found to be strongly dependent on the spinning parameters and was unique for a given set of parameters. The significance of the MEV was evident from the fact that the square of the MEV, which is a measure of the electrical energy utilized by the system, was found to be directly proportional to the rate of formation of fiber surface area during the electrospinning process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Dendritic‐linear‐dendritic (DLD) hybrids are highly functional materials combining the properties of linear and dendritic polymers. Attempts to electrospin DLD polymers composed of hyperbranched dendritic blocks of 2,2‐bis(hydroxymethyl) propionic acid on a linear poly(ethylene glycol) core proved unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co‐electrospun polymer and the solvent systems used for the preparation of the electrospinning solutions exerted a significant effect on the diameter and morphology of the electrospun fibers. It is worth‐noting that aqueous solutions of the DLD polymers and only 1% (w/v) poly(ethylene oxide) resulted in the production of smoother and thinner nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45949.  相似文献   

13.
为了增强透明质酸的耐水溶性、实现药物缓释,本研究应用静电纺技术制备改性透明质酸(GMHA)与聚乙烯醇-苯乙烯吡啶(PVA-SBQ)的复合纳米纤维膜,进一步在紫外光照射下得到光交联复合纤维膜.系统研究了不同的紫外光照时间、温度和pH值下复合纳米纤维的溶胀比以及载药释放性能,结果表明复合纳米纤维膜的溶胀比随温度升高而减小,...  相似文献   

14.
Poly(ether sulfone) (PES) nanofibers were prepared by the gas‐jet/electrospinning of its solutions in N,N‐dimethylformamide (DMF). The gas used in this gas‐jet/electrospinning process was nitrogen. The morphology of the PES nanofibers was investigated with scanning electron microscopy. The process parameters studied in this work included the concentration of the polymer solution, the applied voltage, the tip–collector distance (TCD), the inner diameter of the needle, and the gas flow rate. It was found from experimental results that the average diameter of the electrospun PES fibers depended strongly on these process parameters. A decrease in the polymer concentration in the spinning solutions resulted in the formation of nanofibers with a smaller diameter. The use of an 18 wt % polymer solution yielded PES nanofibers with an average diameter of about 80 nm. However, a morphology of mixed bead fibers was formed when the concentration of PES in DMF was below 20 wt % during gas‐jet/electrospinning. Uniform PES nanofibers with an average diameter of about 200 nm were prepared by this electrospinning with the following optimal process parameters: the concentration of PES in DMF was 25 wt %, the applied voltage was 28.8 kV, the gas flow was 10.0 L/min, the inner diameter of the needle was 0.24 mm, the TCD was 20 cm, and the flow rate was 6.0 mL/h. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
Production of polypropylene (PP) nanofibers below 1 μm in average diameter is difficult with conventional melt‐spinning. A nozzle‐free melt‐type electrospinning (M‐ESP) system with a line‐like CO2 laser beam melting device were used to produce PP nanofibers. To achieve the purpose, core [poly(ethylene‐co‐vinyl alcohol) (EVOH)]–clad (PP) nanofibers (average diameter, 0.88 μm) were fabricated from PP/EVOH/PP three‐layer films using the M‐ESP. The core–clad structure was formed by a wrapping phenomenon caused by the difference in the melt flow rates (MFRs) of PP and EVOH melts. Hollow PP nanofibers were obtained from the core–clad nanofibers by extraction of EVOH. Nanofiber diameter and hollow wall thickness could be altered by changing the MFR of the PP melt. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46393.  相似文献   

16.
Poly(ethylene oxide) (PEO) nanofibers were prepared by electrospinning PEO solution with a mixed solvent of ethanol and deionized water. The results show that the mixed solvent system has noteworthy influences on structures and properties of electrospun PEO nanofibers, including molecular chain orientation, crystallinity degree, surface morphology, fiber diameter, diameter distribution, spinnability, and productivity. With increasing ethanol content in the mixed solvent, wrinkly morphologies appear on the surface of PEO nanofibers due to a high evaporation rate of ethanol during electrospinning process. The dielectric constant, dipole moment, conductivity, density, boiling point, and solubility parameter of the mixed solvent become lower with the ethanol content increasing. Besides, the hydrogen‐bonding interactions between PEO and solvents become weaker. As a result, PEO nanofibers with larger diameters, lower molecular chain orientation, and crystallinity degree are obtained. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45787.  相似文献   

17.
The artificial neural networks (ANNs) were used to provide a model for investigating the relationships of the electrospinning parameters with the diameter of polyethylene oxide (PEO) nanofibers from acid acetic aqueous solution. The effects of four parameters including PEO concentration, acetic acid concentration, applied voltage, and temperature of the electrospinning media on the nanofibers mean diameter were investigated. To train, test, and valid the model, three datasets of the input variables with random values were prepared and the mean diameters obtained were taken as the output for the network. The datasets were analyzed by ANNs software and the correlation coefficient, R-squared (R2), between the predicted values of the nanofibers mean diameter and actual amount were obtained. The results demonstrate the capability of the ANNs model for predicting the nanofibers diameter. The 3-D plots generated from the model show complex and nonlinear relationships between the parameters and nanofibers diameter. From the model, increasing the PEO concentration above a critical point leads to a sharp increase in the nanofibers mean diameter. The effects of applied voltage and temperature are mainly dependent on the PEO concentration. The acetic acid concentration, in general shows a direct relation with the nanofibers mean diameter. The plots also show that to produce nanofibers with the lowest diameter, both the PEO concentration and AcOH concentration should be at lowest values regardless the applied voltage and temperature. In contrast, highest nanofibers diameters are obtained when the PEO concentration and AcOH concentration are at their high values. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Proton‐exchange membrane (PEM) is a core component of fuel cells that provides a channel for proton migration and transport. Prevailing PEMs fabricated using well‐established casting techniques have several limitations such as low proton conductivity, high fuel permeability, and poor stability. To overcome these shortcomings, this article introduces a graphene oxide (GO)‐based nanohybrid Nafion nanofiber membrane prepared using a facile electrospinning technique. On the one hand, electrospinning nanofibers provide efficient transport paths for protons, which tremendously enhance the proton conductivity. On the other hand, GO doping in PEM improves the self‐humidification, stabilities (mechanical, thermal, and chemical), and proton conductivity and reduces the fuel permeability. In this research, nanofiber membranes were obtained from Nafion solutions containing 0, 0.1, and 0.2 wt % GO via electrospinning. The morphology, structure, mechanical properties, proton conductivity, water uptake, and swelling properties of the membranes were studied. The results demonstrated that the comprehensive performance of PEM was significantly improved. The new findings may promote the wide application of PEM fuel cells. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46443.  相似文献   

19.
Varying amounts of exfoliated graphene oxide (GO) are systematically incorporated into nanoscale polyacrylonitrile (PAN) fibers via an electrospinning method. Subsequent treatment of the PAN–GO composite nanofibers under a moderate temperature and high pressure leads to the formation of membrane sheets with enhanced mechanical properties. scanning electron microscope, Fourier transform infrared spectroscopy, and contact angle measurements confirm the successful incorporation of the GO into the PAN nanofiber membranes whose diameter, porosity, and pore size are notably influenced by the amount of the GO content. These composite membranes also exhibit a gradual reduction in the water contact angle as a function of the hydrophilic GO content, resulting in a beneficial property for water purification. In addition, the proper integration of GO into the PAN nanofibers improves the protein rejection rate and water flux during the filtration process, which indicates the possibility of utilizing these types of composite membranes in water treatment systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45858.  相似文献   

20.
An electrospinning procedure was carried out to fabricate gelatin/poly(?‐caprolactone) (Gt/PCL) nanofibers. Response surface methodology based on a three‐level, four‐variable Box‐Behnken design technique was used to model the resultant diameter of the as‐spun nanofibers. A second‐order model was obtained to describe the relationship between the fiber diameter and the electrospinning parameters, namely Gt concentration, PCL concentration, content of acetic acid in the overall solvent, and content of Gt solution in the blend solution. The individual and the interactive effects of these parameters on the fiber diameter were determined. Validation experiments verified the accuracy of the model which provided a simple and effective method for fabricating nanofibers with a controllable and predictable fiber diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号