首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
爆炸箔尺寸对飞片速度的影响   总被引:3,自引:0,他引:3  
爆炸箔是冲击片雷管的关键部件,为了获得爆炸箔的厚度和桥区尺寸对冲击片雷管飞片速度的影响,通过光纤台阶法测试了不同厚度和桥区尺寸的爆炸箔驱动飞片的情况。结果表明:在电压3.4 kV、电流3.5 kA的起爆条件下,最佳的爆炸箔厚度为3.67μm,可以驱动飞片产生2 307 m/s的速度;随着爆炸箔桥区尺寸的减小,飞片速度逐渐提高。因此,可以看出在一定的起爆能量下,驱动飞片达到最大速度的爆炸箔存在一个最佳厚度值;在爆炸箔厚度一定的情况下,减小爆炸箔的桥区尺寸,可以提高爆炸箔驱动飞片的能力,从而可以达到降低冲击片雷管起爆能量阈值的目的。  相似文献   

2.
爆炸箔起爆器发火阈值影响因素的数值模拟   总被引:1,自引:1,他引:0  
为了研究由桥箔、飞片和加速膛所组成的换能组件对爆炸箔起爆器(EFI)发火性能的影响,达到降低发火阈值的目的,利用ANSYS/AUTODYN软件,模拟了桥箔驱动飞片起爆六硝基茋(HNS-Ⅳ)的过程。研究了桥箔厚度对飞片速度的影响,探究了桥区宽度、飞片材料(有机玻璃、陶瓷和聚酰亚胺)、飞片厚度和加速膛长度对EFI发火阈值的影响。结果表明,减小桥区宽度有利于降低爆炸箔起爆器的发火阈值。在输入电压相同的条件下,2μm厚度的桥箔驱动飞片速度最大;爆炸箔起爆器发火电压随着飞片厚度的增加先降低后增大,当厚度为10μm时发火电压最低;相比于0.225 mm、0.250 mm和0.275 mm加速膛,用0.125 mm加速膛时发火电压最低,说明减小加速膛长度有利于降低爆炸箔起爆器的发火阈值;在加速膛孔径确定的情况下,"无限型"加速膛发火电压低于"有限型"加速膛。聚酰亚胺力学性能好、发火电压低、撞击动能小,优于其它两种材料(有机玻璃和陶瓷)。  相似文献   

3.
Al/Ni爆炸箔电爆特性及驱动飞片能力研究   总被引:1,自引:0,他引:1  
利用传统的MEMs工艺成功制备出Al/Ni复合爆炸箔,在4k V的充电电压下研究其电爆性能。研究表明,相比于传统的铜爆炸箔,复合爆炸箔的能量利用高,可达18%,而且爆发提前,所需能量较小,爆发能量集中。飞片速度研究表明,爆炸箔的厚度和充电电压会影响飞片的最终速度,飞片的速度随爆炸箔的厚度和电压升高而增大。当爆炸箔的厚度为3μm、充电电压为5k V时,飞片的速度可达3 100m/s。  相似文献   

4.
不同制造工艺铜箔电爆驱动飞片能力   总被引:1,自引:0,他引:1  
郭菲  付秋菠  王窈  王猛  黄辉  沈瑞琪 《含能材料》2015,23(8):787-790
为研究真空沉积制备的爆炸桥箔(铜箔)致密性和晶体尺寸对爆炸箔驱动飞片能力的影响,采用X射线衍射(XRD)对电子束蒸发和磁控溅射两种工艺制备铜箔的晶型结构进行了表征。用光刻成型的方式将铜箔制成爆炸桥箔,采用光子多普勒测速系统(PDV)测试了爆炸桥箔在不同电压条件下驱动飞片的速度,采用升降法实验对比分析了两种爆炸桥箔驱动飞片起爆六硝基茋-Ⅳ的阈值能量。结果表明,磁控溅射工艺制备的铜箔晶体尺寸小于电子束蒸发工艺制备的铜箔晶体尺寸,电阻率高17%,沉积速率是电子束蒸发铜箔的2.4倍。制成的爆炸桥箔驱动飞片能力略强于电子束蒸发工艺制备的爆炸桥箔驱动飞片能力,且起爆六硝基茋-Ⅳ需要的能量也更低。  相似文献   

5.
研究了电爆炸箔起爆系统起爆回路初始电阻对爆发电流和冲击片雷管飞片速度的影响规律,分析了影响电爆炸箔起爆系统体系的因素,为在可靠发火条件下降低起爆系统体积提供设计参考。  相似文献   

6.
爆炸箔加速飞片的数值模拟   总被引:4,自引:1,他引:3  
任玲  谢高第  杨振英  褚恩义  任西 《火工品》2001,(1):14-16,19
用3种方法对电爆炸箔加速飞片进行了数值模拟研究,并与实测速度了比较,为优化设计爆炸箔起爆器提供了理论依据。  相似文献   

7.
低温共烧陶瓷爆炸箔起爆芯片的设计、制备与发火性能   总被引:1,自引:0,他引:1  
张秋  陈楷  朱朋  徐聪  覃新  杨智  沈瑞琪 《含能材料》2019,27(6):448-455
采用低温共烧陶瓷(Low Temperature Co-fired Ceramics,LTCC)工艺实现了爆炸箔起爆芯片的一体化集成制备。采用丝网印刷的方式制备了厚度为5μm的Au桥箔(300μm×300μm);采用25μm和50μm两种厚度的生瓷片作为爆炸箔起爆芯片的飞片,设计了圆形(Ф=400μm)和方形(L×W=300μm×300μm)的两种加速膛形状的爆炸箔起爆芯片。在0.22μF电容放电条件下,研究了Au桥箔的电爆性能。通过光子多普勒测速技术分析了陶瓷飞片的速度特征及其运动过程中的形貌。结果表明,在发火电压1.8 kV下,Au桥箔的能量利用率最大;飞片的终态速度随着发火电压的增加而增大;在相同的发火条件下,飞片经方形加速膛加速后的出口速度比圆形加速膛高出106~313 m·s~(-1);另外,陶瓷飞片越厚,飞片在飞行过程中的运动形貌保持得越完整。该工艺制备的爆炸箔起爆芯片可成功点燃硼/硝酸钾(BPN)点火药,并起爆六硝基芪(HNS)炸药。LTCC爆炸箔起爆芯片(50μm厚陶瓷飞片,圆形加速膛)的最小点火电压为1.4 kV,最小起爆电压为2.5 kV。  相似文献   

8.
爆炸箔尺寸对冲击片电爆参数的影响   总被引:1,自引:0,他引:1  
研究了特定点火装置在充电电压为2000V和2500V条件下不同截面积桥箔的爆发电流、爆炸时间,预估了飞片的最大击靶速度。通过研究得到了与特定点火装置相匹配的桥箔截面积和该截面下爆炸箔起爆HNS-Ⅳ时的50%发火电压。研究结果可对冲击片雷管发火能量的优化设计提供一定的技术支持。  相似文献   

9.
PDV方法测量电爆炸驱动小飞片速度   总被引:6,自引:5,他引:1  
为优化爆炸箔起爆器性能,采用光子多普勒速度测量技术(PDV)获得了电爆炸驱动小飞片的速度历程。设计了一种电爆炸驱动小飞片测试装置,可以产生Φ0.35 mm×25μm尺寸的小飞片,试验中未对飞片进行任何处理。对两发电爆炸驱动小飞片进行了PDV测速试验,获得了小飞片的速度历程,测得的有效时长约为160 ns。两发飞片的最大速度分别为4520 m·s-1和4330 m·s-1,速度差约为4%,一致性较好。飞片速度剖面有明显拐点。在拐点之前速度上升较快,在60 ns(0.1 mm位移)内达到了最终速度的75%。在拐点之后,速度上升相对变缓,在100 ns内完成了剩余25%速度的增加。  相似文献   

10.
为探索复合多层膜爆炸箔电爆炸的作用机理,开展了Ni/Cu复合多层膜爆炸箔性能研究。采用电化学沉积方法制备了相同厚度的Ni/Cu复合多层膜(调制周期分别为200 nm/300 nm和300 nm/400 nm)及纯Cu、Ni金属膜,通过等离子体发射光谱特性测试分析,计算获得了不同放电电流条件下不同结构的Ni/Cu复合多层膜、纯Cu、Ni金属膜电爆炸等离子体电子温度。通过匹配加速膛、飞片进行了爆炸箔推动飞片的PDV速度测试和分析,获得了不同放电电流条件下Ni/Cu复合多层膜、纯Cu、Ni金属膜爆炸箔推动飞片性能。研究结果表明:在电流为2.5 kA时,(Ni_(200)Cu_(300))_8和(Ni_(300)Cu_(400))_5Ni_(300)电爆炸等离子体发射光谱强度以及等离子体电子温度均高于纯Cu和纯Ni,说明Ni/Cu复合材料在相同条件下电爆炸储能密度更高;在电流为2.5 kA时,Ni/Cu复合材料中的Ni开始对等离子体推动飞片起促进作用,(Ni_(200)Cu_(300))_8和(Ni_(300)Cu_(400))_5Ni_(300)爆炸箔推动飞片的加速时间更长,最终速度均高于纯Cu爆炸箔。  相似文献   

11.
一种原位集成冲击片组件的制备及飞片驱动性能   总被引:1,自引:1,他引:0  
为研究冲击片集成组件制造方法及其性能,采用化学气相沉积法(CVD)在爆炸箔基底上沉积制备了聚氯代对二甲苯(PC)飞片层,并且利用光刻方法原位集成了Su8-2150光刻胶加速膛,获得的加速膛厚度大于300μm且壁面垂直度良好。利用光子多普勒速度(PDV)测量技术获得了该冲击片组件电爆炸驱动飞片的加速历程。对比了常规方法制造的冲击片组件(聚酰亚胺飞片)与相同参数集成冲击片组件的飞片加速历程。结果表明,两组加速历程基本一致。聚酰亚胺飞片与PC飞片在前80 ns内分别达到了最大速度的77%与80%,加速膛出口处飞片速度分别为3970 m·s~(-1)和3906 m·s~(-1),两种冲击片组件驱动性能接近,飞片和加速膛的材料的改变对电爆炸驱动飞片过程未产生明显影响。  相似文献   

12.
《火工品》2015,(6)
针对低能爆炸箔起爆系统需求,分析了起爆系统放电回路效率影响规律,开展了3.5μm厚桥箔爆发电流、爆发电压测试研究。结果表明:回路最大能量利用率符合理论分析,在0.22μF、1 500V电压下电路能量利用效率达到72.33%,桥箔电爆炸驱动飞片速度达到3 680m/s,可以起爆冲击片雷管装药。  相似文献   

13.
爆炸箔起爆系统(EFIS)的桥箔爆发后,其能量主要转换为箔蒸汽的热能和平动能、电磁辐射能以及飞片动能.在忽略了热传导、热辐射、磁场以及其他一些影响因素的条件下,建立了优化EFIS中每种能量转换形式的理论计算模型.计算结果表明:模型的计算结果与实验值偏差在±11%以内,飞片动能只占桥箔沉积能量的15%左右,电磁辐射能约占50%.  相似文献   

14.
陈清畴  马弢  李勇 《含能材料》2019,27(1):79-88
从金属桥箔电爆炸、电爆炸驱动飞片和飞片冲击起爆炸药三个方面,综述了爆炸箔起爆器作用机理的研究进展。认为:爆炸箔起爆器在分段式电阻率模型、先进飞片测速技术、基于能量转化系数的电爆炸驱动飞片速度计算模型和基于临界起爆判据的感度预测等方面取得了重要进展,获得了一些规律性认识,一定程度上促进了其低能化设计。指出:小尺寸条件下电爆炸驱动飞片过程中的能量耗散及飞片烧蚀的定量描述、飞片在飞行中的瞬时形态、爆炸箔起爆器小尺寸装药的非理性爆轰性能预测、波阵面后微流场观测技术将成为爆炸箔起爆器未来研究的重点。  相似文献   

15.
一种爆炸箔飞片组件(英)   总被引:1,自引:1,他引:0  
为了实现小型全金属壳冲击片点火器满足5000 V/1 min的介质耐压要求,研制了一种爆炸箔飞片组件。该组件采用复合聚酰亚胺薄膜作飞片,在230℃高温条件下与爆炸箔陶瓷基片形成一体化组件。研究结果表明,按GJB 344A-2005的要求,该组件能够很好地实现小型全金属壳冲击片点火器5000 V/1 min的介质耐压要求;高温处理不会对爆炸箔电阻、外观带来影响;71℃加速老化84天,组件电阻、外观无明显变化;爆炸箔组件升降法50%发火电流峰值1750 A,比相同条件下采用普通聚酰亚胺薄膜飞片降低300 A以上;组件对小型全金属壳冲击片点火器输出性能无明显影响。  相似文献   

16.
为了提高爆炸箔起爆器的制造效率和产品一致性,设计和制造了一种基于柔性电路板(简称FPC或软板)制造工艺的集成冲击片换能元,并对该集成换能元的电爆炸性能、驱动飞片能力和起爆六硝基茋的能力等基础性能进行了研究。采用高压探头测量了爆炸箔两端的电压曲线,采用罗果夫斯基线圈测量了放电回路的电流曲线,通过光学多普勒测试手段(PDV)测量了电爆炸过程驱动飞片速度历程曲线。结果表明,放电回路峰值电流和桥箔的爆发电流随着电容两端电压的增加而线性增加,其中桥箔的爆发电流从2080 A增加到2680 A。桥箔的爆发时间随着电容两端电压的增加而线性地从232 ns减小至156 ns。随着充电电压的增加,飞片速度从4056 m·s~(-1)增加到4589 m·s~(-1),速度标准偏差为38~48。该冲击片换能元可在放电回路电流峰值约2.04 kA时可靠起爆HNS?Ⅳ,而基于传统制造方式冲击片换能元的起爆电流峰值为2.340 kA。  相似文献   

17.
电爆炸箔加速飞片的动力学模型   总被引:1,自引:0,他引:1  
本文分析了爆炸金属箔加速飞片的物理过程,介绍计算飞片速度的经验模型和动力学模型。在动力学模型的计算中,利用高斯曲线形的拟功率曲线代替实测功率曲线。飞片速度的计算结果与实验符合较好。  相似文献   

18.
为了获得爆炸桥箔贮存后的电爆特性,对爆炸桥箔开展了高温(90℃)和高温高湿(80℃,RH95%)条件下的加速寿命试验。利用照相、扫描电镜分析、发火试验和光子多普勒测速(PDV)方法,研究了加速贮存试验前后爆炸桥箔的形貌、电爆特性和飞片速度。结果表明,加速贮存后桥箔的表面均发生了氧化,高温高湿条件下,杂质元素污染及湿度造成桥箔的颜色变化显著,电阻均值由贮存前的30.3 mΩ上升至66.8 mΩ。高温对桥箔的爆发电流、爆发电压和爆发时间没有显著影响。高温高湿贮存后桥箔的爆发电压显著降低。加速贮存后爆炸桥箔在聚酰亚胺基底的附着能力变差。PDV测速结果表明,随着加速贮存时间的延长,飞片速度由3600 m·s~(-1)降至2100 m·s~(-1)(高温)和1200 m·s~(-1)(高温高湿),加速贮存会影响桥箔驱动飞片的能力,高温高湿条件对飞片速度影响更严重。  相似文献   

19.
为了提高爆炸箔起爆器的制造效率和产品一致性,设计和制造了一种基于柔性电路板(简称FPC或软板)制造工艺的集成冲击片换能元,并对该集成换能元的电爆炸性能、驱动飞片能力和起爆六硝基茋的能力等基础性能进行了研究。采用高压探头测量了爆炸箔两端的电压曲线,采用罗果夫斯基线圈测量了放电回路的电流曲线,通过光学多普勒测试手段(PDV)测量了电爆炸过程驱动飞片速度历程曲线。结果表明,放电回路峰值电流和桥箔的爆发电流随着电容两端电压的增加而线性增加,其中桥箔的爆发电流从2080 A增加到2680 A。桥箔的爆发时间随着电容两端电压的增加而线性地从232 ns减小至156 ns。随着充电电压的增加,飞片速度从4056 m·s-1增加到4589 m·s-1,速度标准偏差为38~48。该冲击片换能元可在放电回路电流峰值约2.04 kA时可靠起爆HNS-Ⅳ,而基于传统制造方式冲击片换能元的起爆电流峰值为2.340 kA。  相似文献   

20.
为了提高爆炸箔起爆系统能量利用效率,采用仿真计算和试验相结合的方法,研究了不同铜箔厚度对爆炸箔起爆性能的影响规律。结果表明:当爆炸箔桥区尺寸为0.3mm×0.3mm时,铜箔厚度为3μm的爆炸箔电爆性能较好,能量利用率较高,在发火电压为1.5k V时,能量利用率达到72.33%,相对应的飞片速度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号