首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Conventional filtration was designed to achieve high levels of particle and pathogen removal. Previous studies have examined the possibility of modifying filtration media to improve their ability to remove microorganisms and viruses. Although these studies have evaluated filter media coatings for this purpose, none have evaluated nanoscale particle suspensions as coating materials. The overall goal of this paper is to describe the preliminary test results of nanoporous aluminium oxide coated media that can be used to enhance filtration of nano and microparticles. Filtration tests were carried out using columns packed with uncoated and coated forms of granular anthracite or granular activated carbon. A positive correlation between isoelectric pH of filter media and particle removal was observed. The modified filter media with a higher isoelectric pH facilitated better removal of bacteriophage MS2 and 3 microm latex microspheres, possibly due to increased favorable electrostatic interactions.  相似文献   

2.
Due to the intrinsically small sizes of enteric viruses (20-100 nm) and their relatively high resistance to most disinfectants, detection of viruses in treated drinking water is not a rare phenomenon. This study therefore evaluates various aspects involved in a hybrid alum coagulation-ultrafiltration (UF) system for virus removal. Coagulant doses (0, 1 and 10 mg Al(3+)/L) and pH conditions relevant to drinking water (pH 6-8) were investigated. With this hybrid system, removal was not attributable merely to MS2 adsorption to flocs and subsequent retention by UF membranes. MS2 removal comprises of inactivation by the effect of pH and coagulant and subsequently, rejection of virus-associated flocs by UF membrane. Coagulation with 1 mg Al(3+)/L at pH 6 and 7 resulted in an overall reduction brought about by an average of 0.62 log inactivation via the pH effect, 1.2 log inactivation by alum coagulant, and >5.4 log rejection by the 100 kDa polyethersulfone UF membrane. In contrast, negligible upstream inactivation was noted with a coagulant dose of 1 mg Al(3+)/L at pH 8, but 5.8 log rejection was attained with downstream UF filtration. By optimizing the conditions appropriate for upstream inactivation and subsequent membrane rejection, virus removal efficiencies can be enhanced.  相似文献   

3.
Virus removal experiments using river water spiked with bacteriophages were conducted by an in-line coagulation-ceramic microfiltration hybrid system to investigate the effects of filtration flux (62.5 and 125 L/(m2 x h)) and type of virus (Qbeta and MS2) on virus removal. In addition, the mass balance of viruses through the hybrid system was analysed by quantifying the infectious and inactive viruses by a combination of the polymerase chain reaction (PCR) method and the plaque forming units (PFU) method. Even when the system was operated at high filtration flux (125 L/(m2 x h)), high virus removal (> 6 log) with short coagulation time (2.4 s) was successfully achieved by dosing polyaluminium chloride (PACI) at more than 1.08 mg-Al/L. Removal performances were different between Qbeta and MS2, although their diameters are almost the same: greater virus removal was achieved for MS2 at PACI dosing of 0.54 mg-Al/L, and for Qbeta at PACI dosing of more than 1.08 mg-Al/L. The combination of the PCR and PFU methods revealed that two phenomena, adsorption to/entrapment in aluminium floc and virucidal activity of PACI, partially account for the high virus removal in the coagulation-MF hybrid system.  相似文献   

4.
Coxsackie B3 (CoxB3) virus was used as a virological tracer for an assessment of the efficiency of pathogen removal by several typical physicochemical treatment and chemical disinfection processes, such as coagulation-filtration, ultra-filtration, and disinfection using chlorine and ozone, with regard to the pathogenic quality of the treated domestic wastewater for reuse purposes. The CoxB3 virus was seeded to sterilized secondary effluent to make a raw water of known pathogenic level. After applying the raw water to each treatment or disinfection process, the residual virus in the finished water was concentrated, and virus assay was carried out by the Tissue Culture Infectious Dose technique. TCID50 was used as an indicative parameter of CoxB3 virus in the raw and treated water. Parallel experiments were also conducted to evaluate the effectiveness of each process for the removal of coliform bacteria. It was noticed from the experiment that both coagulation-filtration and ultrafiltration could achieve substantial removal of TCID50 at about the same level (2-log removal). However, the effect of the two processes on the removal of coliform bacteria was much different: 2-log removal by coagulation-filtration and 4 to 5-log removal by ultrafiltration. The TCID50 removal correlates more closely with the removal of turbidity than that of coliform bacteria. Chlorine was found to be effective in coliform removal but almost had no effect on TCID50. As ozone was applied, a high removal of both coliform bacteria and TCID50 could be obtained.  相似文献   

5.
To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.  相似文献   

6.
A study was conducted on the distribution of pollutants in treated wastewater and the its safety for re-use purposes. Based on the results of a series of tertiary treatment experiments, the effects of three filtration processes, i.e. coagulation-filtration, ozonation-biological activated carbon filtration (O3-BAC) and ultrafiltration (UF), and two chemical disinfection processes, i.e. chlorination and ozonation, on the safety of water re-use were evaluated. It was found that the concentrations of the main pollutants in the secondary effluent and further filtered water follow a log-normal distribution and, therefore, a log-normal probabilistic function can be used to evaluate the suitability of the treated water for re-use purposes. Among the three filtration processes evaluated, UF is the most effective in turbidity removal but less effective in colour and COD removal, while coagulation-filtration and O3-BAC can ensure a good removal of all these pollutants. Regarding chemical disinfection, although chlorine is very effective in inactivation of coliform bacteria, it can not achieve a substantial decrease in viruses. As ozone is applied, effective virus removal can be achieved.  相似文献   

7.
The objective of this study was to investigate the removal of bacteriophages in Mg/Al layered double hydroxide (LDH). Batch experiments were performed with bacteriophage MS2 in a powder form of Mg/Al LDH under various LDH doses. Column experiments were also performed under flow-through condition with bacteriophages MS2 and phiX174 in Mg/Al LDH immobilized on sand surfaces. Batch tests demonstrated that the powder form of Mg/Al LDH was effective in removing MS2 with the removal capacity of 2.2 × 10(8) plaque forming unit (pfu)/g under the given experimental conditions (LDH dose = 2 g/L; initial MS2 concentration = 4.61 × 10(5) pfu/mL). Column experiments showed that the log removal of phiX174 was 4.40 in columns containing 100% Mg/Al LDH-coated sand while it was 0.05 in 100% quartz sand. These findings indicated that Mg/Al LDH-coated sand was effective in removing bacteriophages compared with sand. A more than 4 log removal (=5.44) of MS2 was achieved in 100% Mg/Al LDH-coated sand. This study demonstrates the potential application of Mg/Al LDH for virus removal in water treatment.  相似文献   

8.
In this study, feasibility of membrane separation for the removal of indigenous noroviruses (NVs) is evaluated. The indigenous NV gene was never detected from ultrafiltration (UF) permeates of sewage sludge and treated wastewater. Indigenous NV gene was also not detected from permeates of sewage sludge and treated wastewater by microfiltration (MF) with a pore size of 0.1 microm (MF0.1). Even though the pore size of MF (0.1 microm) was much larger than the diameter of virus particle (approximately 30-40nm), more than 4-log10 reduction value (LRV) at maximum was achieved by membrane separation with MF0.1. NV genes were often detected from permeates of sewage sludge and treated wastewater by MF with a pore size of 0.45 microm (MF0.45), although the maximum log10 reduction values were more than 3.59 for sewage sludge and more than 2.90 for treated wastewater. It is important to verify factors determining the removal efficiency of viruses with MF membranes.  相似文献   

9.
Effective wastewater treatment is critical to public health and well-being. This is especially true in developing countries, where disinfection of wastewater is frequently inadequate. People who live in these areas may benefit from wastewater disinfection using ozone. This study evaluated the ability of a new electrochemical process of ozone generation, which produced ozone continuously at high pressure and concentration by the electrolysis of water, to disinfect tap water and secondarily treated wastewater. Inactivation of Klebsiella terrigena, Escherichia coli, MS2 bacteriophage and poliovirus 1 was evaluated first in reverse osmosis (RO) treated water. Inactivation of K. terrigena (6-log), E. coli (6-log), MS2 (6-log) and poliovirus 1 (>3-log) was observed after 1 min of ozonation in a 1 L batch reactor. Experiments were then performed to assess the microbiological impact of disinfection using ozone on secondarily treated municipal wastewater. The effect of ozonation on wastewater was determined for total and faecal coliforms, bacteriophages and heterotrophic plate count (HPC) bacteria. Electrochemical ozone generators provided an effective, rapid and low-cost method of wastewater disinfection. Based on the results of this research, electrochemically generated ozone would be well suited to remote, small-scale, disinfection operations and may provide a feasible means of wastewater disinfection in developing countries.  相似文献   

10.
The infectivity of viruses (Qbeta, MS2, T4, and P1) after dosing virus-contaminated water with 4 types of aluminium coagulant was investigated. The concentrations of infectious viruses were determined after dissolving aluminium hydroxide flocs in alkaline solution. The concentration of infectious viruses did not recover to the initial value after a short floc-dissolution time (5 s). Although the infectious virus concentration increased as the floc-dissolution time was extended to 5 h, it did not recover fully. Irreversible adhesion between virus particles and aluminium coagulant is responsible for the insufficient recovery. We interpret this phenomenon as a virucidal activity of the aluminium coagulant. All tested aluminium coagulants (PACl, alum, and reagent grade aluminium chloride and aluminium sulfate) inactivated all types of viruses tested. PACl had the highest virucidal activity. The virucidal activity of aluminium coagulants was lower in river water, presumably owing to the presence of natural organic matter.  相似文献   

11.
Wastewater reuse in arid regions is important for the production of a water resource to be utilised for non-potable purposes and to prevent the environmental transmission of disease-causing agents. This study was conducted to evaluate the effect of water quality on the comparative disinfection efficiency of viruses, bacteria and spores by UV irradiation. Furthermore, the microbial quality of effluent produced by coagulation, high rate filtration (HRF) and either UV irradiation or chlorination was determined. Using low pressure collimated beam, a UV dose of 80 mWs/cm2 was needed to achieve a 3-log10 inactivation of either rotavirus SA-11 or coliphage MS2, whereas over 5-log10 inactivation of E. coli was reached with a dose of only 20 mWs/cm2. B. subtilis inactivation was found to be linear up to a dose of 40 mWs/cm2 and then a tailing up to a UV dose of 120 mWs/cm2 was observed. It is worth noting that effluent turbidity of < 5 NTU did not influence the inactivation efficiency of UV irradiation. Operation of a pilot plant to treat secondary effluent by coagulation, HRF and UV disinfection at a UV dose of 80 mWs/cm2 resulted in the production of high quality effluent in compliance with the Israel standards for unrestricted irrigation (< 10 CFU/100 mL faecal coliform and turbidity of < 5 NTU). Sulphite reducing clostridia (SRC) were found to be more resistant than coliphages and F coliform for UV irradiation. The results of this study indicated that UV disinfection is suitable for the production of effluents for unrestricted irrigation of food crops.  相似文献   

12.
Nitrate and pesticide contaminated ground- and surface-waters have been found around the world as a result of the use of these compounds in agricultural activities. In this study we investigated a biological treatment method to simultaneously remove nitrate and pesticides from contaminated water. Methane was supplied as the sole source of carbon to the microbial culture. A methane-fed membrane biofilm reactor (M-MBfR) was developed in which the methane was supplied through hollow-fiber membranes to a biofilm growing on the membrane surface. A methane-oxidizing culture enriched from activated sludge was used as inoculum for the experiments. Removal of nitrate and the four pesticides atrazine, aldicarb, alachlor, and malathion was examined both in suspended culture and in the M-MBfR. The maximum denitrification rate with suspended culture was 36.8 mg N gVSS(-1) d(-1). With the M-MBfR setup, a hydraulic retention time of approximately one hour was required to completely remove an incoming nitrate concentration of about 20 mg NO3-N l(-1). The microbial culture could remove three of the pesticides (aldicarb, alachlor, and malathion). However, no atrazine removal was observed. The removal rates of both nitrate and pesticides were similar in suspended culture and in membrane-attached biofilm.  相似文献   

13.
Seven major water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation (KOWACO)'s management, take water from the Paldang Reservoir in the Han River System for drinking water supply. There are taste and odour (T&O) problems in the finished water because the conventional treatment processes do not efficiently remove the T&O compounds. This study evaluated T&O removal by ozonation, granular activated carbon (GAC) treatment, powder activated carbon (PAC) and an advanced oxidation process in a pilot-scale treatment plant and bench-scale laboratory experiments. During T&O episodes, PAC alone was not adequate, but as a pretreatment together with GAC it could be a useful option. The optimal range of ozone dose was 1 to 2 mg/L at a contact time of 10 min. However, with ozone alone it was difficult to meet the T&O target of 3 TON and 15 ng/L of MIB or geosmin. The GAC adsorption capacity for DOC in the three GAC systems (F/A, GAC and O3 + GAC) at an EBCT of 14 min is mostly exhausted after 9 months. However, substantial TON removal continued for more than 2 years (>90,000 bed volumes). GAC was found to be effective for T&O control and the main removal mechanisms were adsorption capacity and biodegradation.  相似文献   

14.
This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.  相似文献   

15.
依托甪直污水处理厂再生水回用工程,研究利用浸没式超滤膜处理热电厂冷却水回用作为印染工艺漂洗用水的可行性以及采用混凝沉淀预处理对超滤膜污染的影响。结果表明:①采用浸没式超滤膜处理电厂冷却水,对浊度、总铁和COD的平均去除率分别为98.2%、96.9%和43.2%,出水水质稳定,能够满足印染企业漂染用回用水的水质要求;②增加混凝沉淀的预处理程序,对水体中污染物有很好的去除效果,能减缓超滤膜表面的不可逆污染,减少超滤膜的化学清洗次数,改善超滤膜的过滤性能,提高超滤膜的过滤通量。  相似文献   

16.
地下水源水中氨氮的去除有其特殊性,研究利用沸石直接过滤氨氮超标地下水,并对沸石去除氨氮的机理进行了探讨。试验结果表明,滤速和进水氨氮浓度对沸石柱运行效果有很大影响,沸石对低浓度氨氮具有良好的去除作用。在滤速为6m/h,进水氨氮浓度分别为0.8mg/L和1.42mg/L时,以《城市供水水质标准》(CJ/T 206—2005)规定的0.5mg/L为出水水质标准,沸石柱可以分别运行65h和18h。沸石柱对氨氮的去除是吸附和离子交换共同作用的结果。  相似文献   

17.
The occurrence of micropollutants in the aquatic environment has become a crucial topic in the last two decades owing to the innovative development of analytical instrumentation such as LC tandem MS. Using these new techniques it became obvious that pesticides, pharmaceuticals, ingredients of personal care products, biocides, flame retardants, and perfluorinated compounds are entering rivers and streams via treated wastewater. Also contamination of bank filtrates, groundwater and in a few cases even drinking water was identified. Wastewater treatment plants are not designed to remove polar persistent organic pollutants occurring in the sub-mg/L range and hence many of these organic pollutants are passing WWTPs to a high extent. Waterworks with a potential pesticide contamination in their raw water are equipped with advanced techniques such ozonation, activated carbon or nanofiltration enabling the removal of a high variety of other organic compounds. However, waterworks without an expected pesticide contamination are frequently equipped with common treatment processes not enabling the removal of these kinds of organic pollutants. Therefore, comprehensive management activities for protection of aquatic environments and water resources must consider the removal of all micropollutants relevant to water quality and ecology, independent of their usage or origin.  相似文献   

18.
利用磁场处理水的研究   总被引:8,自引:0,他引:8  
在对磁场处理循环水的DO ,pH ,ORP和温度等变化的测定 ,以及磁场处理水通过生锈铁管时 ,红锈逐渐变成黑锈的X线分析基础上 ,探讨了磁场水处理对生锈铁管的除锈、防锈机理。磁场水处理使得Fe2 O3在铁管表面形成致密的复合氧化物Fe3O4 ,对铁管起保护作用。  相似文献   

19.
Bioretention is a novel best management practice for urban storm water, employed to minimize the impact of urban runoff during storm events. Bioretention consists of porous media layers that can remove pollutants from infiltrating runoff via mechanisms that include adsorption, precipitation, and filtration. However, the effectiveness of bioretention in treating repetitive inputs of runoff has not been investigated. In this study, a bioretention test column was set up and experiments proceeded once every week for a total of 12 tests. Through all 12 repetitions, the infiltration rate remained constant (0.35 cm/min). All 12 tests demonstrated excellent removal efficiency for TSS, oil/grease, and lead (99%). For total phosphorus, the removal efficiency was about 47% the system removal efficiency ranged from 2.3% to 23%. Effluent nitrate concentration became higher than the influent concentration during the first 28 days and removal efficiency ranged from 9% to 20% afterward. Some degree of denitrification was apparently proceeding in the bioretention system. Overall, the top mulch layer filtered most of TSS in the runoff and prevented the bioretention media from clogging during 12 repetitions. Runoff quality was improved by the bioretention column.  相似文献   

20.
In the present study, phosphorus removal was studied using as coagulant spent alum sludge from a water treatment plant of EYDAP (Athens Water Supply and Sewerage Company) and compared to alum (Al2(SO4)3.18H2O), iron chloride (FeCl3.7H2O), iron sulfate (Fe2(S04).10H2O) and calcium hydroxide (Ca(OH)2) at a constant pH (equal to 6).The comparison was based on their efficiency to remove phosphorus in synthetic wastewater consisting of 10 mg/L P as potassium dihydrogen phosphate and 50 mg/L N as ammonium chloride, The experiments were carried out using a jar-test apparatus and the measurements were performed according to the Standard Methods for the Examination of Water and Wastewater. Pure alum, iron chloride and iron sulfate were much more efficient in phosphorus removal than the spent alum sludge but in the case of calcium hydroxide, phosphorus removal was very low in pH = 6. Specifically, orthophosphate were totally removed by alum using 15 mg/L as Al, by alum sludge using 75 mg/L as Al and by FeCl3.7H2O or Fe2(SO4).10H2O using 30 mg/L of Fe while in the case of calcium hydroxide P removal was actually zero. pH measurements showed that the uptake of phosphates is associated to the release of OH ions in the solution and that the end of P uptake is accompanied by the stabilization of pH. Finally this spent alum sludge was tested on municipal wastewater and proved to be effective as apart from phosphorus it was shown to remove turbidity and COD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号