首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
王磊  董金善  杨林娟 《矿冶工程》2022,42(4):130-133
通过氧化铝陶瓷普通铣磨与旋转超声铣磨加工对比试验,分析了加工工件表面粗糙度随超声功率、砂轮线速度、进给速度、铣磨深度以及砂轮粒度的变化规律。结果表明:超声功率由0增大至90 W时,工件表面粗糙度下降,表面形貌得到改善; 随着砂轮线速度增大、进给速度和铣磨深度减小,旋转超声铣磨和普通铣磨工件表面粗糙度均呈下降趋势,在砂轮线速度1.09~5.49 m/s、进给速度100~550 mm/min、铣磨深度7~22 μm条件下,旋转超声铣磨相比于普通铣磨的表面粗糙度最大降幅19.3%。相比于80#砂轮,170#砂轮旋转超声铣磨后的表面粗糙度最大降幅23.1%,表面形貌相对更好。  相似文献   

2.
温禄淳 《煤矿机械》2020,41(8):70-72
为了提高深槽结构件表面的磨削加工精度,采用信号过滤的方式对磨削力进行测定,研究砂轮转速对深槽磨削加工表层磨削力和表面形貌的影响。研究结果表明:当砂轮转速增大后,引起切向切削力与法向切削力的同时下降,法向切削力比切向切削力高。砂轮转速增大会引起磨削区内产生更多的磨粒数量,最大未变形切屑厚度减小,导致成屑磨粒的切入深度降低。当砂轮转速增大后,表面粗糙度发生线性降低,产生了沿切削方向分布的划痕,降低最大未变形切削厚度,使磨粒成屑过程需要切入的工件表面深度随之降低,减小了耕犁条纹的深度,形成更小的切削力。  相似文献   

3.
功率超声珩磨技术是磨削加工中的一种应用,常用于发动机缸套的精密与光整加工。珩磨加工过程中,磨粒与工件的相互作用产生大量热量,并有很大一部分热量传递到工件中,从而可能对工件造成热损伤。为衡量轴向功率超声珩磨过程中珩磨热传递到工件、砂轮、磨屑和冷却液中热量的多少,建立了轴向功率超声珩磨磨削区热量分配比例模型、磨粒—工件模型和冷却液对流换热模型。提出了超声珩磨时磨削区冷却液在超声振动作用下发生的空化效应会改变磨削区冷却液的流动状态的观点。得出超声珩磨可提高冷却液的换热效率,减小传递到工件表面的磨削热量,因而可减少工件的磨削热损伤。并通过数值仿真得出超声珩磨时冷却液对流换热系数是普通珩磨条件下的7倍左右。  相似文献   

4.
姚远  张高峰 《矿冶工程》2017,37(2):125-128
基于工程陶瓷二维预压应力磨削方法,进行了氧化铝陶瓷在不同二维预压应力条件下的磨削试验,探究氧化铝陶瓷材料的去除机理和加工损伤。结果表明,相同的磨削深度下,随着二维预压应力值增加,磨削力增大,陶瓷工件磨削表面质量提高,磨削表面的粗糙度降低,亚表面损伤层厚度减小。预压应力使裂纹扩展所需能量增大,从而减少裂纹,提高磨削表面质量。  相似文献   

5.
《煤炭学报》2012,42(6)
针对钛合金干式磨削特点,制备了金刚石和立方氮化硼(cubic boron nitride,CBN)超硬磨料砂轮,进行了与碳化硅陶瓷砂轮干式磨削Ti6Al4V合金的对比试验研究。用扫描电子显微镜、三维体视显微镜、粗糙度仪和显微硬度计对磨削工况和试样表面进行了测定。分析了磨削用量对表面粗糙度的影响,比较了3种砂轮磨削工件的表面粗糙度、表面形貌、微观组织及显微硬度。研究表明:工件表面粗糙度随着磨削深度增大而增大,随着砂轮速度的增大而减小。与绿色碳化硅陶瓷结合剂砂轮相比,CBN和金刚石超硬磨料砂轮磨削工件的表面粗糙度和变质层深度较小,表面无明显烧伤,在一定用量条件下更适合Ti6Al4V合金干式磨削加工。  相似文献   

6.
针对磨削工程陶瓷时边界处易出现损伤缺陷的问题进行了研究,建立了基于磨削参数的边界损伤预测模型。采用单因素法进行了磨削实验,以边界损伤深度为参考对仿真结果进行验证,结果表明,磨削深度对边界损伤影响较大;主轴转速越低,边界损伤值越大,且随主轴转速升高边界损伤值的变化逐渐趋于平缓。与普通磨削相比,超声波辅助磨削能有效改善被加工材料的边界损伤情况。  相似文献   

7.
高速切削现象与普通切削不同,实验表明,在高速切削条件下,当切削速度在180~314 m/min,铣削深度不超过0.5 mm时,进给速度在较大范围内变动,对铣削质量影响不大,影响铣削质量的主因是切削速度和吃刀深度,加工试件的表面粗糙度值随切削速度的增大而变小,随吃刀深度增大而增大。  相似文献   

8.
张鹏程  董平等 《矿冶》2001,10(1):59-62,40
采用X2 0 0 1应力分析仪测试了铍材经车加工和铣加工后的残余应力 ,研究了机加工参数对残余应力的影响及残余应力消除方法。结果表明 ,车加工和铣加工均使铍材表层产生压应力 ,随进刀量和吃刀深度的增加 ,压应力逐渐增大 ,其范围在 10 0~ 2 0 0MPa之间。化学蚀刻是消除铍材机加应力的有效方法。化学蚀刻后逐层测试所得应力沿深度分布与用多波长法测试结果趋势一致 ,大小略有差异  相似文献   

9.
在45#钢基体表面等离子喷涂得到Fe基WC涂层,将喷涂后的试样进行磨削加工,探究不同加工参数下超声滚压对Fe基WC涂层表面性能的变化。利用正交试验研究在不同的超声滚压(USRP)加工参数下,强化处理后Fe基WC涂层粗糙度的变化,明确各加工参数对表面粗糙度影响的显著性。采用三维白光干涉形貌仪、SEM等手段分析Fe基WC涂层的表面粗糙度、截面组织形貌、显微硬度和残余应力。结果表明,工艺参数对粗糙度影响的程度顺序为:温度>主轴转速>静压力>下压量。在温度为650℃、主轴转速为125 r/min、静压力为0.5 MPa、下压量为0.25 mm的工艺参数下,高温超声滚压(HT+USRP)处理后Fe基WC涂层表面粗糙度Ra由原本磨削的1.298μm和常温超声滚压(NT+USRP)的0.658μm降至0.211μm;在温度为650℃、主轴转速为125 r/min、静压力为0.4 MPa、下压量为0.25 mm的工艺参数下,涂层表面发生塑性变形,晶粒细化,显微硬度由原本磨削后未超声滚压(Untreated)的588.3 HV和NT+USRP的712.5 HV升至1058.8 HV。NT+USRP后的残余压应力为-359.7 MPa,HT+USRP后降至-308.2 MPa,但HT+USRP后试样的残余压应力层深度能达到800μm。HT+USRP工艺明显改善了Fe基WC涂层表面性能质量,其中温度对工艺的影响最为显著。  相似文献   

10.
为了研究不同工况对截齿截割含夹矸煤岩的磨损深度影响规律,建立截齿-夹矸煤岩耦合的有限元模型,模拟含夹矸煤岩截齿截割过程,探究截齿应力分布、温度分布与磨损深度的关联程度,采用正交试验法分析转速、牵引速度和安装角对截齿磨损深度的影响规律。研究结果表明:在模拟试验参数范围内,截齿应力分布和温度分布影响截齿磨损深度的大小,且截齿应力、温度与截齿磨损深度呈正相关性;相比于不含夹矸煤岩,含夹矸煤岩截齿应力、温度和磨损深度更大;随着截齿牵引速度的增加,截齿齿尖前刀面磨损深度呈增大趋势;随着截齿转速的增加,截齿齿尖前刀面磨损深度呈减小趋势;随着安装角的增大,磨损深度呈先减小后增大的趋势。研究结果可以有效提高采煤机截割性能及效率。  相似文献   

11.
超音速等离子喷涂WC/Co涂层的工艺优化   总被引:2,自引:0,他引:2  
采用国内新研制的超音速等离子喷涂(S-APS)设备制备WC-12Co涂层,探讨其影响因素.结果表明,喷涂距离和送粉量不变时,粒子平均温度和平均速度随功率增加而增加.功率和送粉量不变时,粒子平均温度和平均速度随喷涂距离的增加而降低.喷涂距离不变时,粒子速度随送粉量的增加呈先增后减的趋势,粒子温度随送粉量的增加而下降,电压对粒子的速度影响较大,粒子速度随电压的增大而增大,电流对粒子温度影响较大,粒子温度随电流的增大而增大.超音速等离子喷涂WC-12Co粉末的最佳工艺参数为:功率56kW(电压140V,电流400A),氩气流量3.8m^3/h,氢气流量0.15m^3/h,氮气流量0.60m^3/h,喷涂距离100mm,送粉量50g/min.  相似文献   

12.
获取钻进参数进行能耗分析是实现高效钻进的手段。为探究旋转钻进破岩过程中钻进参数与破岩能耗的相关性,通过室内钻进试验研究钻进参数对钻进速度的影响;提出了能时密度指标,并通过数值模拟对旋转破岩过程中的能耗特征进行分析。研究结果表明:旋转钻进岩石的轴压和转速与钻进速度成正相关,破岩能耗与钻进位移呈线性关系,钻进千枚岩的最佳试验参数为轴压650 N、转速400 r/min;基于钻进比功建立钻进破岩能时密度公式,能时密度随轴压和转速的增加呈先下降后上升的趋势,能时密度集中于0.0069 J/(mm3·s)时能耗最低,钻进效率最优。  相似文献   

13.
以原子比为62.4Ni-19.7Al-8.2Cr-0.62Zr-0.99B的混合粉体为原料,采用高能球磨干磨法制备改性Ni3Al粉体,通过XRD和TEM研究球磨时间对粉体相结构的影响。在测定乙醇中粉体pH-Zeta电位图的基础上,研究不同分散剂及其加入量对试样在乙醇介质中分散性能的影响。结果表明,随着干磨时间的增加,原料转化率逐渐增高,干磨时间过长会使得试样冷焊严重,干磨50h时,Ni3Al粉体的合成率高,改性元素固溶效果好。当pH=9时试样在乙醇中的分散性能最好,随着超声时间及各分散剂浓度的增加,试样在乙醇中的分散性呈先增大后减小的趋势,四种分散剂的分散效果排序为:PVP>SPAN-80>TEA>CTAB。粉体在乙醇中分散的最佳条件:pH=9,3%浓度的PVP,超声功率560 W,超声分散时间30min。  相似文献   

14.
高压水射流割缝技术是提高低透气性煤层瓦斯抽采效率的有效措施之一,确定割缝深度是优化钻孔布置和射流参数的基础。基于Fluent软件数值模拟分析了入口压力、靶距、旋转速度对水射流流场特征的影响规律;基于高压水射流破煤实验系统,开展了淹没和非淹没条件下冲击破煤实验,并进行了现场实验。研究表明,喷嘴结构一定时,水射流速度随着入口压力的增大而增加,冲击压力随冲击距离增大而发生衰减;水射流发展过程中截面积逐渐增大,导致冲击压力集中区域的范围随靶距的增大而逐渐扩展;射流旋转会导致旋转方向一侧的应力大于另一侧,靶体表面最大切应力随旋转速度增加而增大;随着入口压力和冲蚀时间的增加,水射流对试样的冲蚀深度增大,但冲蚀深度随冲蚀时间的增加存在阈值。根据高压水射流破煤深度实验结果可知,喷嘴直径为1 mm、压力为30 MPa时,水射流割缝直径可以达到1.2 m。工程应用表明,割缝钻孔平均瓦斯抽采流量为普通钻孔的1.56~2.52倍;抽采16 d后,瓦斯抽采浓度维持在30%以上。  相似文献   

15.
为了提升磨料射流的切割效率,通过研制的超高压磨料水射流切割系统开展了不同工艺参数对石灰岩的切割效果研究。结果表明:随着水射流压力的增加,切割深度首先表现为线性增大,然后增速逐渐放缓;最佳磨料流量参数为0.6 kg/min;最佳初始射流靶距为5 mm;磨料射流的切割深度随喷嘴横移速度呈下降趋势;随着射流切割角度的增加,切割深度呈现出“M”型变化趋势,在80°时切割深度达到最大值;基于正交试验进行极差分析,明确工艺参数对切割深度的影响权重由大到小依次为水射流压力、喷嘴横移速度、磨料流量、喷嘴切割角度和射流靶距,得出最佳的切割参数组合为水射流压力400 MPa,磨料流量0.8 kg/min,喷嘴横移速度1 mm/s,射流靶距6 mm,射流切割角度80°。  相似文献   

16.
针对高性能硬质合金粘结相Ni3Al粉体的制备,本文以原子比为 62.4Ni-19.7Al-8.2Cr-0.62Zr-0.99B的混合粉体为原料,采用高能球磨干磨法制备改性Ni3Al粉体,通过XRD和TEM分析手段,研究了球磨时间对粉体相结构的影响,然后在测定乙醇中粉体pH-Zeta电位图的基础上,研究了不同分散剂及其加入量对试样在乙醇介质中分散性能的影响。研究结果表明:随着干磨时间的增加,原料转化率逐渐增高,而干磨时间过长会使得试样冷焊严重,其中干磨至50 h时,Ni3Al粉体的合成率高,改性元素固溶效果好。Zeta电位测试表明,当pH=9时试样在乙醇中的分散性能最好,且随着超声时间及各分散剂浓度的增加,试样在乙醇中的分散性呈先增大后减小的趋势,四种分散剂的分散效果排序为:PVP > SPAN-80 > TEA > CTAB。推荐粉体在乙醇中分散工艺为:pH=9,3 wt%浓度的PVP,超声功率560 W,超声分散时间30 min。  相似文献   

17.
基于CFD方法,采用RSM湍流模型,对实验室旋流-静态微泡浮选柱进行了单相流数值模拟研究,通过PIV实验验证了数值模拟结果与实验一致,并在此基础上研究了循环流量和旋流段入料方式对流场的影响。结果表明:随着循环流量的增加,旋流倒锥段和柱浮选段内的轴向速度和切向速度均增大,循环量一定时,随着入射角度的增大,旋流倒锥段内轴向速度逐渐由"W"形向"U"形转变,切向速度呈下降趋势,柱浮选段内轴向速度和切向速度均降低,当入射角为90°时降低最明显,切向速度基本降至0m/s,旋流倒锥段内湍流耗散率随着入射角的增大而增大。入射角较低时,增大角度可增加微细粒矿物和粗粒级矿物的浮选概率,其中入射角为60°时最佳,继续增加入射角度,旋流矿化方式转变为管流矿化方式,不利于旋流段按粒度差和密度差分选,从而降低分选效率。  相似文献   

18.
选取316L不锈钢粉末以激光沉积方式对含预制裂纹的316L不锈钢核电管道进行不同工艺参数的沉积修复,通过光学显微镜观测修复区宏观形貌和显微组织,通过显微硬度计、拉伸试验机测定修复试样力学性能,利用疲劳试验机测试不同扫描速度下修复试样疲劳寿命,并用扫描电镜观察断口形貌特征。结果表明,修复区由熔合区和熔覆区组成,熔覆区由胞状晶、柱状晶、树枝晶组成,熔合区呈现网状晶体结构。显微硬度分布呈现熔合区>熔覆区>热影响区>基材。在一定范围内,随着激光功率的增加、扫描速度和送粉速率的减少,晶粒尺寸逐渐增大,修复区显微硬度呈下降趋势,热影响区硬度呈上升趋势。当激光功率为1 300 W、扫描速度9 mm/s、送粉速率0.5 g/min,试样伸长率为61.61%,在400 MPa应力水平下,循环次数为67 225次。由于良好的宏观形貌、修复区细化的晶体、程度较小的加工硬化,试样表现出良好的塑性和抗疲劳性能,力学性能最优。  相似文献   

19.
于恒定功率超声场中,采用优选的电沉积工艺参数,制备出纳米晶Ni-SiO2复合层。借助显微硬度计和质量损失法测定复合层的性能。结果表明,显微硬度和耐酸性均较常规Ni-SiO2复合层提高,但受阴极电流密度影响明显。随阴极电流密度增加(2~14 A/dm2),显微硬度近似呈线性增大趋势,最高达461.3 HV,耐酸性先改善后削弱,在10%HCl溶液中的腐蚀速度从0.008 8 mg/mm2.d减至0.007 1 mg/mm2.d后增至0.009 3 mg/mm2.d,在10%H2SO4溶液中的腐蚀速度从0.008 1 mg/mm2.d减至0.006 6 mg/mm2.d后增至0.008 2 mg/mm2.d。  相似文献   

20.
为研究充填料浆质量分数(A)、砂灰比(B)和机制砂占比(C)对复合骨料充填料浆流变特性的影响规律和优化充填料浆配比参数,采用响应面法(RSM)设计试验开展屈服应力和扩散度等测试。结果表明:对于充填料浆的屈服应力,各影响因素的显著性为A>C>B>AC>C2>BC>A2,对于充填料浆的扩散度,各影响因素的显著性为A>C> A2> C2> AC,砂灰比对扩散度影响不显著;屈服应力随充填料浆质量分数的增加呈上升趋势,且质量分数越大,屈服应力上升速率越快,屈服应力随机制砂占比的增加呈下降趋势,且机制砂占比越高,屈服应力下降速度越快;扩散度随充填料浆质量分数的增加呈下降趋势,且质量分数越大,其下降速率越快,扩散度随着机制砂占比的增加呈增大的趋势,但当质量分数较大时,机制砂占比对扩散度的影响逐渐减弱;设定充填料浆的屈服应力为100~120Pa,扩散度为8~12cm,得到机制砂占比为10%、20%和30%时充填料浆质量分数范围分别为73.49%~76.14%、74.21%~75.86%和74.50%~77.14%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号