首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to select a variety of pepper with high concentration of capsaicin and subject it to supercritical fluid extraction (SFE), in order to determine the best conditions of temperature (40, 50 and 60 °C) and pressure (15, 25 and 35 MPa) in terms of global yield (X0) and capsaicinoids content of the extracts. The influence of drying process (freeze and oven drying) on X0, capsaicin (C) and dihydrocapsaicin (DHC) contents and total phenolics was also analyzed. Capsicum frutescens showed the highest levels of capsaicinoids (1516 μg/g fresh fruit). For the responses C and DHC, the extraction conditions of 15 MPa and 40 °C provided the highest concentrations (C ⿿ 42 mg/g extract and DHC ⿿ 18.5 mg/g extract). The freeze drying process resulted in extracts with the highest concentration of capsaicinoids (61 mg/g extract), but in contrast, the phenolics were less susceptible to different drying processes, with a mean concentration of 35 mg GAE/g extract. The kinetics experiments indicated that the extraction rate of oleoresin was slightly slower than that of capsaicinoids at the operation conditions (40 °C and 15 MPa).  相似文献   

2.
The objective of this work was to determine the economic feasibility of large-scale operations of supercritical fluid extraction (SFE) for the recovery of phenolics using grape bagasse from Pisco residues. Experimental data were used to estimate the extraction kinetic parameters, as well as the cost of manufacturing the extracts. Experimental data were obtained using supercritical CO2 containing 10% ethanol (w/w) at 313 K and 20–35 MPa. The supercritical CO2/ethanol extraction process produced extracts with higher concentrations of phenolics than extracts produced using conventional techniques. The compounds identified in the extracts were syringic, vanillic, gallic, p-hydroxybenzoic, protocatechuic and p-coumaric acids, as well as quercetin. An evaluation of the economics of the process indicated the feasibility of an industrial SFE plant with a capacity of 0.5 m3 for producing an extract with an expected phenolics concentration of approximately 23 g/kg of extract at an estimated cost of manufacturing of US$ 133.16/kg.  相似文献   

3.
The use of supercritical carbon dioxide (SC⿿CO2), with water as a modifier, was evaluated in this study as a method to extract protocatechuic acid (PA) from Scutellaria barbata D. Don. The highest extraction yield of PA, 64.094 ± 2.756 μg/g of dry plant, was achieved at 75 °C and 27.5 MPa, with the addition of 15.6% (v/v) water as a modifier. The mean particle size was 0.355 mm, the CO2 flow rate was 2.2 mL/min (STP) and the dynamic extraction time was 100 min. At pressures of 16.2⿿30.0 MPa and temperatures of 45⿿75 °C, the mole fraction solubilities of PA in SC⿿CO2 ranged from 2.829 ÿ 10⿿7 to 9.631 ÿ 10⿿7. The solubility data for PA fit well in the Chrastil model. It is evident that the SC⿿CO2 extraction uses less solvent, saves both energy and time and is an environmentally friendly extract technology that can be used in the food, cosmetic and pharmaceutical industries.  相似文献   

4.
Melia azedarach L. is a plant with wide use in folk medicine since it contains many bioactive compounds of interest. The present study aimed to extract bioactive compounds from M. azedarach fruits by a sequential process in fixed bed using various solvent mixtures. Extractions were performed at 50 °C and 300 bar in four sequential steps using supercritical CO2 (scCO2), scCO2/ethanol, pure ethanol, and ethanol/water mixture as solvents, respectively. The efficacy of the extraction process was evaluated by extraction yield and kinetics, and analysis of extracts by: (1) thin layer chromatography (TLC), (2) phenolics content, (3) reduction of surface tension of water, (4) gas chromatography (GC–MS), (5) electrospray ionization mass spectrometry (ESI–MS) and (6) antiviral activity. The overall extraction yield reached 45% and TLC analysis showed extracts with different composition. extract obtained from CO2/ethanol mixture (SCEE) exhibited the greatest ability to reduce surface tension of water from 72.4 mN m−1 [1] of pure water to 26.9 mN m−1 of an aqueous solution of 40 g L−1. The highest phenolics contents were observed in both the hydroalcoholic extract and scCO2/ethanolic extract. Volatile oils were not detected in the supercritical extracts by GC–MS. MS analyses identified the fatty acids: linoleic, palmitic and myristic acid in the supercritical extract (SCE), and the phenolics: caffeic acid and malic acid in the other extracts. In addition, SCE and SCEE extracts showed significant inhibition percentage against Herpes Simplex Virus Type 1. The extraction process proposed in the present study produced extracts with significant potential for application in food and pharmaceutical industries.  相似文献   

5.
This study highlights the possibility of supercritical carbon dioxide for extracting phenolic compounds from bamboo leaves that have shown antioxidant and anticancer activities. The CO2 extraction solvent was modified by adding ethanol–water mixture cosolvent of different concentrations to allow extraction of both polar and non-polar compounds. Conventional Soxhlet extraction was also done to investigate the advantages of supercritical extraction over the conventional extraction method. For addition of 5% (mol) of a 25:75 (mol:mol) ethanol–water mixture solvent to CO2, the highest amount of polyphenols (7.31 ± 0.06 mg/g bamboo leaves in catechin equivalents) and radical scavenging activity (3.65 ± 0.05 mg/g bamboo leaves in BHA equivalents) at 20 MPa and 95 °C, could be obtained among the mixture cosolvents studied. For Soxhlet extraction with a 25:75 (mol:mol) ethanol–water mixture, 1.48 times the amount of phenolic compounds (10.85 ± 0.52 mg/g bamboo leaves in catechin equivalents), could be isolated compared with the supercritical extraction method, however, the radical scavenging activity (3.30 ± 0.05 mg/g bamboo leaves in BHA equivalents) was 0.90 times lower than the extract obtained from the supercritical extraction method. The seven major antioxidative compounds identified from the SC-CO2 extraction method were: (1) dl-alanine, (2) gluconic acid, (3) phosphoric acid, (4) ß-siosterol, (5) β-amyrene, (6) α-amyrin acetate and (7) friedelin.  相似文献   

6.
This work is aimed to investigate the extraction of palm oil using pressurized ethanol and propane as solvents. The effects of temperature (293⿿333 K), pressure (from 10 to 20 MPa), solvent flow rate (from 1 to 5 mL/min), and composition of the solvent mixture were evaluated on the oil extraction yield, and chemical profile of the extracted oils. The experiments were conducted in a 100 mL extractor coupled to a HPLC pump for ethanol and a syringe pump for the propane displacement. Global yields up to 75 wt% were obtained in the experiments. The kinetic profiles of the extractions were described by the Sovová⿿s model, which presented good agreement with the experimental observations. The palm oils extracted with distinct solvents were characterized regarding its density and viscosity in a temperature range from 293 to 343 K, its chemical profile determined by GC/MS, and carotenoid content.  相似文献   

7.
Multi-stage countercurrent extraction (MCE) as a novel extraction technique was used to extract antioxidants from Ginkgo biloba leaves. Orthogonal array design (OAD) was employed to optimize the ratio of 60% ethanol to raw material (8–16 mL/g), extraction time (30–60 min) and extraction temperature (60–80 °C) to obtain a high yield of antioxidants from G. biloba leaves by MCE. The optimum conditions were a ratio of 60% ethanol to raw material of 16 mL/g and extraction time of 30 min at 80 °C. Under these conditions, the yields of flavonoids and total phenolics were 1.74% and 2.42%, respectively, and DPPH radicals scavenging activity of the extract was 89.97%. Compared with heat-reflux extraction, MCE had obvious advantages of less extraction time and lower solvent and energy consumption. It may be used as a promising technique for the extraction of bioactive compounds from plant materials.  相似文献   

8.
With the goal of maximizing the extraction yield of phenolic compounds from pitanga leaves (Eugenia uniflora L.), a sequential extraction in fixed bed was carried out in three steps at 60 °C and 400 bar, using supercritical CO2 (non-polar) as solvent in a first step, followed by ethanol (polarity: 5.2) and water (polarity: 9.0) in a second and third steps, respectively. All extracts were evaluated for global extraction yield, concentration and yield of both polyphenols and total flavonoids and antioxidant activity by DPPH method (in terms of EC50). The nature of the solvent significantly influenced the process, since the extraction yield increased with solvent polarity. The aqueous extracts presented higher global extraction yield (22%), followed by ethanolic (16%) and supercritical extracts (5%). The study pointed out that the sequential extraction process is the most effective in terms of global extraction yield and yield of polyphenols and total flavonoids, because it produced the more concentrated extracts on phenolic compounds, since the supercritical ethanolic extract presented the highest phenolics content (240.5 mg GAE/g extract) and antioxidant capacity (EC50 = 9.15 μg/mL). The most volatile fraction from the supercritical extract, which is similar to the essential oils obtained by steam distillation or hydrodistillation, presented as major compounds the germacrenos D and B + bicyclogermacrene (40.75%), selina-1,3,7(11)-trien-8-one + selina-1,3,7(11)-trien-8-one epoxide (27.7%) and trans-caryophyllene (14.18%).  相似文献   

9.
Supercritical carbon dioxide (SC-CO2) extraction of grape marc was studied using water (W) and ethanol (EtOH) as co-solvent at 15% (w/w), 100 and 200 MPa, and 313.15, 323.15 and 333.15 K to analyze their influence upon total phenols of the extracts. The overall extraction curves were determined and suggested 10 MPa and 313.15 K as the best operating conditions for SC-CO2 + 15%W extraction, and 10 MPa and 333.15 K for SC-CO2 + 15% EtOH. The phenolic yields obtained were 63.4 g/kg of extract for SC-CO2 + 15% W and 38.8 g/kg of extract for SC-CO2 + 15% EtOH. An alternative method combining Sc-CO2 + 15% W extraction, followed by SC-CO2 + 15% EtOH was tested. This procedure provided the best results allowing to obtain the highest phenolic yield (68.0 g/kg of extract), phenol content (733.6 mg GAE/100 g DM), proanthocyanidins concentration (572.8 mg catechin/100 g DM) and antioxidant activity (2649.6 mg α-tocopherol/100 g DM). SC-CO2 methods were compared with methanol extraction.  相似文献   

10.
Bioactive components, asiatic acid and asiaticoside, were extracted from Centella asiatica using subcritical water as an extraction solvent. Extraction yields of asiatic acid and asiaticoside were measured using high-performance liquid chromatography (HPLC) at temperatures from 100 to 250 °C and pressures from 10 to 40 MPa. As temperature or pressure increased, the extraction yield of asiatic acid and asiaticoside increased. At the optimal extraction conditions of 40 MPa and 250 °C, the extraction yield of asiatic acid was 7.8 mg/g and the extraction yield of asiaticoside was 10.0 mg/g. Extracted asiatic acid and asiaticoside could be collected from water as particles with a simple filtering process. Dynamic light scattering (DLS) was used to characterize particle size. Particles containing asiatic acid were larger (1.21 μm) than particles containing asiaticoside (0.76 μm). The extraction yields of asiatic acid and asiaticoside using subcritical water at 40 MPa and 250 °C were higher than extraction yields using conventional liquid solvent extraction with methanol or ethanol at room temperature while the subcritical water extraction yields were lower than extraction yields with methanol or ethanol at its boiling point temperature.  相似文献   

11.
Supercritical carbon dioxide extraction was employed to extract antioxidants from Pleurotus ostreatus. The response surface methodology was employed to determine the optimal conditions for extraction of ergothioneine and polyphenols. The ergothioneine concentration in the mushroom extract was quantified and characterized using high pressure liquid chromatography (HPLC) followed by tandem mass spectrometry (MS/MS). The optimized values of responses were obtained at a pressure of 21 MPa, a temperature of 48 °C and a co-solvent amount of 133 ml, yielding an ergothioneine content of 1.35 mg/g dw, total phenol content of 5.48 mg GAE/g dw, and IC50 for DPPH radical scavenging capacity of 0.008 mg/ml. A higher desirability value of 0.98 for model demonstrated that response surface methodology can be successfully applied for optimizing supercritical carbon dioxide extraction of antioxidants from P. ostreatus. A good correlation was found between DPPH radical scavenging capacity and ergothioneine (R2 = 0.94) as well as with polyphenols (R2 = 0.95).  相似文献   

12.
13.
Supercritical carbon dioxide extraction (SFE-CO2) parameters were optimized using response surface methodology and central composite design for lovage (Levisticum officinale Koch.) roots and leaves containing valuable phytoconstituents. Mathematical model predicted the highest yields of extracts from roots and leaves 2.26 and 2.29%, respectively, at 45 MPa pressure, 60 °C temperature, 90 min (roots) and 30 min (leaves) extraction time, whereas the yield of hydrodistilled essential oil was 0.24 and 0.74%, respectively. The highest relative content of the most valuable constituent Z-ligustilide in roots and leaves extracts was 77 and 50% at 10 MPa; however, the highest yields of this compound from 100 g of dry material were obtained at the highest applied pressure and constituted 1188 mg (roots) and 540 mg (leaves). This study showed that lovage is a good source of Z-ligustilide and SFE-CO2 is a preferable technique for its isolation.  相似文献   

14.
The extraction of polyphenol compounds from jatoba (Hymenaea courbaril L. var stilbocarpa) bark using supercritical fluid extraction (SFE) with CO2 and cosolvents has been investigated. Among the solvent systems studied, SFE using CO2 and water (9:1, v/v), at 323 K and 35 MPa, presented the best results, with extract yield of 24%, and with high antioxidant activity (IC50 of 0.2 mg/cm3). This solvent system was used to determine global yield isotherms, which were built at 323 and 333 K, and 15, 25, and 35 MPa, using a second lot of jatoba. The highest yield was 11.5% at 15 MPa and 323 K, with maximum total phenolic compounds (TPC) of 335.00 mg TAE/g extract (d.b.) and total tannins content of 1.8 g/100 g raw material. A kinetic experiment was performed using optimized conditions, yielding 18% extract, and the kinetic parameters were used to scale-up the process from laboratory to pilot scale. Chemical analyses showed high content of phenolic compounds in the extracts of jatoba bark mostly due to the presence of procyanidins.  相似文献   

15.
Phase equilibrium data of caffeine, vanillin, o-ethyl vanillin and a natural rosemary extract (containing 73.9% carnosic acid and 14.7% carnosol) in argon have been determined in present work.Solubility data were determined at temperatures of 313.15 K, 333.15 K and 363.15 K and in the pressure range from 0.82 MPa up to 50.27 MPa using a static–analytic method and were compared to solubility data of the same substances in CO2.Maximal solubility of vanillin in argon was obtained at a temperature of 313.15 K and a pressure of 43.8 MPa, approx. 0.015 g/g. Comparing the solubility data of pure vanillin in argon and in CO2 higher solubility in argon is observed at lower temperatures and pressures. For o-ethyl vanillin the solubility in argon is higher in comparison to solubility in CO2 in the entire range of pressure, especially at higher temperatures.Maximal solubility of caffeine in argon was observed at a temperature of 363.15 K 0.001361 g caffeine/g argon at 38.9 MPa. With increasing pressure solubility increases, while temperature does not have a noticeable impact in the temperature range from 313.15 K to 333.15 K; the solubility increased with increasing temperature to 363.15 K. Similarly, solubility of carnosic acid extract increases with increasing pressure, from about 0.0097 × 10−2 g substance/g gas at 2.08 MPa and at 313.15 K to 0.0338 × 10−2 g substance/g gas at 50.27 MPa and at 363.15 K.Solubility of the investigated compounds in argon is a function of both, pressure and temperature. Generally, pressure significantly impacts solubility particularly up to a pressure of 20.0 MPa in case of vanillin and up to 30 MPa in case of o-ethyl vanillin and carnosic acid extract. An additional increase of pressure has only a slight impact on solubility. In the case of caffeine, the impact of pressure on the solubility becomes more evident at pressures higher than 20 MPa.  相似文献   

16.
Carob pulp kibbles, a by-product of carob been gum production, was studied as a source of bioactive agents. Firstly, the carob kibbles were submitted to an aqueous extraction to extract sugars, and supercritical fluid extraction (SFE) was applied to the solid residue of that aqueous extraction, by using compressed carbon dioxide (SC-CO2) as the solvent and a mixture of ethanol and water (80:20, v/v) as a co-solvent. Pressure and temperature were studied in the ranges 15–22 MPa, and 40–70 °C. Particle diameter, and co-solvent percentage in ranges of 0.27–1.07 mm, and 0–12.4%, respectively, were also studied, as well as the flow rate of SC-CO2 between 0.28 and 0.85 kg h−1, corresponding, respectively, to 0.0062 and 0.0210 cm s−1 of superficial velocity. The extracts were characterised in terms of antioxidant capacity by DPPH method, and total phenolics content by the Folin–Ciocalteu method. The central composite non-factorial design was used to optimise the extraction conditions, using the Statistica, version 6 software (Statsoft). The best results, in terms of yield and antioxidant capacity, were found at 22 MPa, 40 °C, 0.27 mm particle size, about 12.4% of co-solvent and a flow rate of 0.29 kg h−1 of SC-CO2. The phenolics profile of the extracts obtained at these conditions was qualitatively evaluated by HPLC-DAD. The solid residue of the supercritical extraction was also studied showing to be a dietary fiber, which can be compared to Caromax™, a carob fiber commercialised by Nutrinova Inc.  相似文献   

17.
The removal of total carbohydrates and phenolics from the hull of a new barley variety BT 584 using solid-liquid batch and aqueous pressurized fluid (ethanol or ionic liquid) extractions were evaluated. Using pressurized fluids, temperature was the most significant variable for the extraction of biocompounds from barley hull. The highest phenolics extraction (189.1 ± 3.1 mg/g hull) was obtained using pressurized aqueous ionic liquid while the highest carbohydrates extraction (450.3 ± 7.8 mg/g hull) was obtained using pressurized aqueous ethanol. The predicted solubility of ferulic acid and glucose in water, ionic liquid or carbonic acid, and the acid dissociation constant of the compounds studied allowed proposing an extraction mechanism based on biomass interaction with ionic species formed during pressurized fluid extraction. The anionic species facilitated removal of phenolics while the interaction of cationic/anionic species facilitated removal of carbohydrates from barley hull biomass.  相似文献   

18.
Subcritical water extraction (SWE) of antioxidants from Coriandrum sativum seeds (CSS) was optimized by simultaneous maximization of the total phenolics (TP) and total flavonoids (TF) yield and antioxidant activity, using IC50 value. Box–Behnken experimental design (BBD) on three levels and three variables was used for optimization together with response surface methodology (RSM). Influence of temperature (100–200 °C), pressure (30–90 bar) and extraction time (10–30 min) on each response was investigated. Experimentally obtained values were fitted to a second-order polynomial model and multiple regression. Analysis of variance (ANOVA) was used to evaluate model fitness and determine optimal conditions. Moreover, three-dimensional surface plots were generated from employed mathematical model. The optimal SWE conditions obtained in simultaneous optimization were temperature of 200 °C, pressure of 30 bar and extraction time of 28.3 min, while obtained values of TP and TF yields and IC50 value at this experimental point would be 2.5452 g GAE/100 g CSS, 0.6311 g CE/100 g CSS and 0.01372 mg/ml, respectively. Moreover, good and moderate linear correlation was observed between antioxidant activity (IC50 value) and total phenolics content (R2 = 0.965), and total flavonoids content (R2 = 0.709) which indicated that these groups of compounds are responsible for antioxidant activity of C. sativum extracts.  相似文献   

19.
Supercritical Fluid Extraction (SFE) was used to obtain myrtle leaf extracts, and to study the antioxidant capacity (AOC) and in vitro antimicrobial activity of those extracts. To optimize the SFE operational conditions, the response surface methodology (RSM) was adopted. The parameters studied were: pressure (P), within the range 10 to 30 MPa; temperature (T), between 35 °C and 60 °C and supercritical carbon dioxide (SCCO2) flow rate (Q) within the range 0.15 to 0.45 kg h−1. The results show a good fit to the proposed model and the optimal conditions obtained (23 MPa, 45 °C, and SCCO2 flow rate of 0.3 kg h−1) were within the experimental range. The predicted values agreed with experimental ones, thus indicating the suitability of the RSM model for the optimization of the extraction conditions being investigated. With those values remaining constant, ethanol as a co-solvent was then studied. There was an observed rise in AOC as the amount of ethanol increased, within the range studied (0–30 wt% ethanol). The extract with the highest AOC was tested for its antimicrobial activity against gram-positive and gram-negative bacteria. The minimum inhibitory concentration (MIC) values obtained showed significant inhibitory effect against gram-positive bacteria.  相似文献   

20.
Squalene and tocopherols are the most important bioactive constituents in lipophilic amaranth fraction. Therefore, developments of processes of isolation of amaranth extracts enriched with these compounds are of interest. In this study the lipophilic fraction of amaranth seeds was extracted by supercritical fluid extraction with carbon dioxide (SCE-CO2) under different pressure conditions and by adding 2 and 5% of cosolvent ethanol. The yield of extract varied from 1.37 (15 MPa without cosolvent) to 5.12% (55 MPa and 5% of cosolvent). The highest content of unsaponifiables (21.1%) in the extract was at 55 MPa and 5% of cosolvent; at these conditions the yields of tocopherols and squalene from amaranth seeds were 317.3 mg/kg and 0.289 g/100 g, respectively. Tocopherol isomers in amaranth oil were distributed at the approximate ratio of 1(α-T):27(β-T):6.5(γ-T):5(δ-T). The extract was fractionated in the two separators by gradual decrease of the pressure and it was found that the fraction obtained at ambient conditions contained the highest concentration of tocopherols (up to 7.6 mg/g) and squalene (up to 17.9 g/100 g oil). The highest antioxidant activity measured by the L-ORAC assay possessed the fractions with the highest concentrations of squalene and tocopherols and obtained at 15 MPa with pure CO2 (235.1 μmol TE/g) and 2% of cosolvent (257.6 μmol TE/g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号