首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The paper presents an approach toward an enhancement of the measuring range of high-speed sensors for the measurement of liquid film thickness distributions based on electrical conductance. This type of sensors consists of electrodes mounted flush to the wall. The sampling of the current generated between a pair of neighboring electrode is used as a measure of the film thickness. Such sensors have a limited measuring range, which is proportional to the lateral distance between the electrodes. The range is therefore coupled to the spatial resolution. The proposed new design allows an extension of the film thickness range by combining electrode matrices of different resolution in one and the same sensor. In this way, a high spatial resolution is reached with a small thickness range, whereas a film thickness that exceeds the range of the high resolution measurement can still be acquired even though on the costs of a lower spatial resolution. A simultaneous signal acquisition with a sampling frequency of 3.2 kHz combines three measuring ranges for the characterization of a two-dimensional film thickness distribution: (1) thickness range 0–600 µm, lateral resolution 2×2 mm2, (2) thickness range 400–1300 µm, lateral resolution 4×4 mm2, and (3) thickness range 1000–3500 µm, lateral resolution 12×12 mm2. The functionality of this concept sensor is demonstrated by tests in a horizontal wavy stratified air–water flow at ambient conditions. Using flexible printed circuit board technology to manufacture the sensor makes it possible to place the sensor at the inner surface of a circular pipe.  相似文献   

2.
Longitudinal heat conduction is an important parameter in the cryogenic field, especially in cryogenic heat exchangers. In the present study, the parasitic effect of tube wall longitudinal heat conduction on temperature measurement within the tube has been studied for cryogenic gas with low mass flow rates by finite element method and experimental tests. The effects of various parameters such as tube outlet temperature, tube wall thermal conductivity, mass flow rate, and tube wall thickness have been investigated. Axial positioning errors of temperature sensor due to tube wall longitudinal heat conduction were higher for lower gas flow rates. The results showed that the tube wall thermal conductivity leads to axial heat conduction within the tube wall, but the higher tube wall thermal conductivity does not lead to bigger axial positioning error of temperature sensor at tube outlet. According to data obtained from simulations and experiments, sensor with distance of 5 mm from tube outlet had 14.92% and 8.51% temperature measurement error (with respect to gas flow temperature at tube outlet) for tube wall thermal conductivities of 16 and 400 W m−1 K−1, respectively.  相似文献   

3.
We propose a refractive index optical fiber sensor based on the micro cavities generated through the fiber catastrophic fuse effect. This sensor was tested in the measurement of solutions with refractive indices ranging from 1.3320 to 1.4280. The linear dependence of the reflection spectra modulation period as function of the surrounding environment refractive index leads to a resolution of 3 × 10−4 RIU. The proposed sensor is an innovative solution based on optical fiber damaged by the fuse effect, resulting in a cost effective solution.  相似文献   

4.
The detection of contaminated food in every stage of processing required new technology for fast identification and isolation of toxicity in food. Since effect of food contaminant are severe to human health, the need of pioneer technologies also increasing over last few decades. In the current study, MDA was prepared by hydrolysis of 1,1,3,3-tetramethoxypropane in HCl media and used in the electrochemical studies. The electrochemical sensor was fabricated with modified glassy carbon electrode with polyaniline. These sensors were used for detection of sodium salt of malonaldehyde and observed that a high sensitivity in the concentration range ∼1 × 10−1 M and 1 × 10−2 M. Tafel plots show the variation of over potential from  1.73 V to  3.74 V up to 10−5 mol/L indicating the lower limit of detection of the system.  相似文献   

5.
A carbon paste electrode modified with carbon nanotube and benzoylferrocene (BF) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of captopril (CAP), was described. The electrode was employed to study the electrocatalytic oxidation of CAP, using cyclic voltammetry (CV), chronoamperometry (CHA) and square wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of CAP at the surface of modified electrode occurs at a potential of about 85 mV less positive than that of an unmodified CPE. SWV exhibits a linear dynamic range from 1.0 × 10−7 to 3.5 × 10−4 M and a detection limit of 3.0 × 10−8 M for CAP. Finally the modified electrode was used for determination of CAP in CAP tablet and urine sample.  相似文献   

6.
The implementation of a unit capable to recognize liquids based on an interdigital capacitive sensor (IDC) is presented. The sensor’s structure was fabricated on standard FR-4 PCB board. Its capacitance change relies upon permittivity change of the medium above IDC electrodes, representing dielectric properties of the liquid used. Along with the microcontroller and simple interface circuit, information about the type of the liquid is presented on a 2 × 16 character display and through RS232 connection on PC. Implemented unit was tested against seven liquids (benzene, phenol, acetone, ethanol, methanol, formaldehyde and distillated water) and a steady state when unit only detected air. Results imply usage of this approach for the fabrication of cost effective, portable devices for on-field sensing applications.  相似文献   

7.
This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.  相似文献   

8.
In this paper, an instrumentation system for the measurements of local solid volumetric concentration, local solid velocity, local solid mass flowrate and solid mass flowrate in gas-solid two-phase flow system is developed. It is based on a new type of a Capacitance-Electrostatic sensor (CES). The CES sensor is mainly composed of a capacitance electrode array and two electrostatic electrode arrays. The optimum design of the sensor is achieved by finite element method. The capacitance electrode array is employed to detect the solid distribution over the cross-section of the pipe, and the local solid volumetric concentration measurement is further derived. The electrostatic electrode arrays are used to measure the local solid velocities in conjunction with cross-correlation method. From the local solid velocity and local volumetric concentration, the solid mass flowrate and the local solid mass flowrate can be achieved. The developed system for the local solid volumetric concentration measurement is verified through analogue simulation experiments and static experiments. Finally, the system is employed to measure the local solid volumetric concentration, local solid velocity, local solid mass flowrate and solid mass flowrate on a belt conveyor. The experimental results show that the measurement error of the local solid volumetric concentration measurement results are less than 10.43% for solid local volumetric concentration ranging from 0.02 to 0.56, the standard deviations of the local solid velocity measurement results are less than 0.42 for solid velocity ranging from 3.5 m/s to 15.0 m/s, and the relative error of the solid mass flowrate is within −19.6% to +14.9% for solid mass flowrate ranging from 0.006 kg/s to 0.103 kg/s, indicating that the system is capable of achieving multi-parameters measurement in gas-solid two-phase flow system.  相似文献   

9.
With recent development in advanced manufacturing, demand for nanometric accuracy in dimensional metrology has increased dramatically. To satisfy these requirements, we propose a high-accuracy micro-roundness measuring machine (micro-RMM) using a multi-beam angle sensor (MBAS). The micro-RMM includes three main parts: the MBAS, a rotary unit, and a bearing system. The MBAS has been designed and established in order to improve motion accuracy of the micro-RMM. The dimensions of the MBAS are 125(L) mm × 130(W) mm × 90(H) mm. Compared with other methods, an MBAS is less susceptible to spindle error (stage-independence) when detecting angles, can maintain high sensitivity with miniaturized size, and can be used conveniently at the factory level. The optical probe, reported in this paper, is based on the principle of an autocollimator, and the stability is improved when using the MBAS. Unlike multi-probe methods, the micro-RMM is constructed to realize roundness measurement by using only one probe, which is less susceptible to instrumental errors. Experimental results confirming the feasibility of the multi-beam angle sensor for roundness measurement are also presented.  相似文献   

10.
A modified carbon paste electrode for haloperidol drug based on haloperidol-phosphomolybdate (HP-PM) as an ion-exchanger dissolved in plasticizer DBP and its potentiometric characteristics were discussed. The electrode exhibited a good Nernstian slope of 56.9 ± 0.3 mV/decade with a linear concentration range from 3.2 × 10−6 to 1.0 × 10−2 M for the haloperidol ion. The limit of detection (LOD) was 1.5 × 10−6 M. It had response time of 5–8 seconds (s), useable in pH range of 6.2–8.6 and temperature of 20–60 °C. The electrode shows clear discrimination of haloperidol drug from several inorganic ions, sugars and some common drug excipients. The sensor was applied for determination of haloperidol drug in urine and in pharmaceutical formulations using potentiometric determination, standard addition and the calibration curve methods. The results are satisfactory with excellent percentage recovery comparable or better than those obtained by other routine methods.  相似文献   

11.
In order to walk safely, forces and moments exerted on humanoid robot foot should be measured and used for controlling the robot. This paper describes the development and evaluation of a six-axis force/moment sensor used under humanoid robot foot. The developed sensor is capable of measuring 400 N horizontal force, 1000 N vertical force, 20 N·m moment about the horizontal axis and 10 N·m moment about the vertical axis using rectangular cross-sectional beams. The structure of the sensor is newly modeled, and the sensing elements are simulated by using finite element method (FEM). Then the sensor is fabricated by attaching strain gages onto the beams. Finally, a characteristic test of the developed sensor is carried out, and the output from FEM analysis agrees with those from the characteristic test.  相似文献   

12.
We developed a promising shearing force sensor that is small in size and can measure shearing force along two axes independently. This sensor consists of an elastic gum frame and an optical sensor chip (6 mm × 6 mm × 8 mm). From the experimental results, the resolutions of the sensor along the x- and y-axes are found to be 0.070 N and 0.063 N. We also experimentally demonstrated that the sensor can separately measure shearing force along two axes. Finally, we demonstrated that the scale factor which correspond to resolution and linear portion which correspond to measuring range of the signals can be changed easily by using three types of elastic gum frame. This sensor can be embedded in the finger of a robot hand and use it to not only measure shearing force but also detect the slip phenomenon.  相似文献   

13.
This paper presents a long-stroke contact scanning probe with high precision and low stiffness for micro/nano coordinate measuring machines (micro/nano CMMs). The displacements of the probe tip in 3D are detected by two plane mirrors supported by an elastic mechanism, which is comprised of a tungsten stylus, a floating plate and two orthogonal Z-shaped leaf springs fixed to the outer case. A Michelson interferometer is used to detect the vertical displacement of the mirror mounted on the center of the floating plate. An autocollimator based two dimensional angle sensor is used to detect the tilt of the other plane mirror located at the end of the arm of the floating plate. The stiffness and the dynamic properties are investigated by simulation. The optimal structural parameters of the probe are obtained based on the force-motion model and the constrained conditions of stiffness, measurement range and horizontal size. The results of the performance tests show that the probe has a contact force gradient within 0.5 mN/μm, a measuring range of (±20 μm), (±20 μm), and 20 μm, respectively, in X, Y and Z directions, and a measurement standard deviation of 30 nm. The feasibility of the probe has preliminarily been verified by testing the curved surface of a convex lens.  相似文献   

14.
Minimal-taper microholes are widely used in modern industries. Electrochemical micromachining (EMM) has been demonstrated to be a feasible method to fabricate these microholes. In this study, based on its unique processing properties and productivity, a disk microelectrode array was fabricated via electrolysis for producing micro-holes. The dimensions of the cathode for hydrolysis were optimized by applying the finite element method to the constructed physical model. A 3 × 3 disk microelectrode array and a 5 × 5 cylindrical microelectrode array with uniform dimensions were then fabricated using the optimized cathode. Micro-holes were drilled on stainless-steel plates using both disk and cylindrical microelectrode arrays. The taper of the resulting micro holes obtained using the new disk microelectrode array was lower than that of the holes formed using the cylindrical microelectrode array. The effects of EMM parameters, including the applied voltage, feeding speed, and pulse-on time, on the hole diameter and taper were also investigated. The results suggest that appropriate machining parameters should be selected in consideration of the effects of these parameters on hole diameter, taper, localization, and material removal rate.  相似文献   

15.
A potential step method was used to characterize the electrooxidation of methanol on a chemically modified electrode in an ionic liquid solvent. Two major findings were reported from this study. Firstly, the oxidation was dominant 2.2 s after the potential step. Before that, the double layer charging and adsorption were dominant. Therefore, there should be a waiting time of a few seconds if a methanol sensor is developed with a potential step method. Secondly, the oxidation of methanol on the electrode was diffusion controlled. The concentration of methanol affected the diffusion. The diffusion constant D0 was 8.37 × 10−17 m2/s when the concentration was lower than 0.5 M and was 2.66 × 10−13 m2/s when the concentration was higher than 1.0 M. This suggests that the methanol concentration should be kept higher than a threshold in an ionic liquid based fuel cell.  相似文献   

16.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

17.
The design and development of an Abbe-compliant linear encoder-based measurement system for position measurement with a targeted 20 nm uncertainty (k = 2) in machine tools and CMMs is presented. It consists of a linear scale and a capacitive sensor, mounted in line on an interface which is guided in the scale's measurement direction and driven by a linear motor based on the output signal of the capacitive sensor. The capacitive sensor measures the displacement of a target surface on the workpiece table. The functional point, which is the center of a tool or touch probe, is always aligned with the scale and capacitive sensor such that this configuration is compliant with the Abbe principle. Thermal stability is achieved by the application of a thermal center between the scale and capacitive sensor at the tip of the latter, which prevents both components to drift apart. Based on this concept, a prototype of a one-DOF measurement system was developed for a measurement range of 120 mm, together with an experimental setup aimed at verifying the reproducibility of the system for changing ambient conditions of ±0.5 °C and ±5%rh and the repeatability during tracking of a target surface over a short period of time. These experiments have shown that the measurement uncertainty of the one-DOF system is below 29 nm with a 95% confidence level.  相似文献   

18.
The Korea Research Institute of Standards and Science (KRISS) has developed a 20 N deadweight force standard machine. The machine consists of a weight stack, a loading frame, a taring system, a main body and a control system. The taring system has the role of compensating the initial force generated by the loading frame. With two motors, a displacement sensor, several limit switches, and a synthetic control system consisting of a programmable logic controller and an operating PC, the machine can be operated almost fully automatically. The machine can generate a compressive force in the range of 0.5–22 N with a relative expanded uncertainty of 1.0 × 10–4. The machine was compared with a 200 N deadweight force standard machine. In the comparison, the relative deviation was 5.8 × 10–5, less than the declared expanded uncertainty of the force standard machines, therefore confirming the machine’s accuracy.  相似文献   

19.
《Wear》2006,260(7-8):915-918
Past studies with PTFE nanocomposites showed up to 600× improvements in wear resistance over unfilled PTFE with the addition of Al2O3 nanoparticles. Irregular shaped nanoparticles are used in this study to increase the mechanical entanglement of PTFE fibrils with the filler. The tribological properties of 1, 2, 5 and 10 wt.% filled samples are evaluated under a normal pressure and sliding speed of 6.3 MPa and 50.8 mm/s, respectively. The wear resistance was found to improve 3000× over unfilled PTFE with the addition of 1 wt.% nanoparticles. The 5 wt.% sample had the lowest steady state wear rate of K = 1.3 × 10−7 mm3/N m and the lowest steady friction coefficient with μ = 0.21.  相似文献   

20.
The reported work has been carried out in the direction of establishment of metrological traceability of capacitance up to 200 MHz at CSIR-NPL. In this perspective, the set of seven coaxial reference air-lines (Type 900-LZ series) exhibiting capacitance values varying from 2 pF to 20 pF have been realized as a capacitance standard at high frequency (1 MHz–200 MHz). This is principally achieved with reference to the SI base units of the meter and the second. The standard value of capacitance of each of the reference air-line has been computed up to 1000 MHz by employing transmission line theory. The reference capacitance value of each of these air-lines has also been measured at 1 kHz which thereafter extrapolated up to 1000 MHz using resonance technique. RF impedance analyzer has been calibrated up to 200 MHz for capacitance using computed capacitance of reference air-lines as standard. The reported work will be helpful in establishing the calibration services for low value of capacitance standards in a frequency range from 1 MHz to 200 MHz at CSIR-NPL. The work will also bridge the gap between LF and RF impedance metrology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号