首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aging is associated with a disturbance in the regulation of the hypothalamic-pituitary-adrenal axis (HPA) and reduced levels of glucocorticoid receptors (GR) in the hippocampus. To compensate for these effects, we have investigated whether estrogen therapy normalized the HPA response to stress and GR in hippocampus and paraventricular (PVN) nucleus. Young (3-4 months) and old (20 months) male Sprague-Dawley rats were bled by tail cut in the basal state and following ether stress. While basal and ether-stimulated levels of plasma corticosterone (CORT) were similar in the two groups, old animals presented a delayed termination of the response to ether stress. A dexamethasone inhibition test carried out in old animals, showed a failure to completely block plasma CORT after ether stimulation. Furthermore, in old rats GR-immunoreactive levels were reduced in CA1-CA2 hippocampal subfields and subiculum, while normal levels were obtained in CA3-CA4 and PVN. We observed that prolonged estrogen treatment (6 weeks) of old rats normalized the termination of the stress response, restored dexamethasone inhibition of plasma CORT, and increased GR immunoreactivity in CA1 and CA2 hippocampal subfields and subiculum. The results suggest that estrogen treatment enhanced the glucocorticoid feedback signal by increasing GR in hippocampus, and corrected the disturbances in HPA axis regulation. These animal experiments may be important to elucidate the effects of estrogenic on the hippocampal and HPA dysfunction associated with aging and Alzheimer's disease in humans.  相似文献   

2.
Previous experiments showed that the activation of the hypothalamic-pituitary-adrenal (HPA) axis during stress was associated with behavioral lateralization used as a marker of population heterogeneity in mice. Furthermore, brain asymmetries have been demonstrated in neurotransmitter metabolism and neuroendocrine modulation. As the hippocampus modulates the activity of the HPA axis in stress and basal conditions, we postulated that hippocampal corticoid receptors may be asymmetrically distributed and that asymmetry may differ according to behavioral lateralization of animals. In order to answer these questions, binding capacity of mineralocorticoid (MR) and glucocorticoid (GR) receptors was determined in right and left hippocampi of mice previously selected for paw preference. The results show that regardless of behavioral lateralization, there was a tendency for a right dominance in MR binding capacity in the hippocampus but interestingly, the percentage of right/ total MR binding capacity was inversely correlated with individual paw preference scores. The affinity of MRs did not depend on behavioral lateralization. GR binding capacity was similar in each hemisphere and no relationship was found between GR binding capacity and paw preference scores. These results suggest that hippocampal receptors for corticoids may play an important role in the asymmetrical brain control of immune reactivity.  相似文献   

3.
Glucocorticoids are hormone products of the adrenal gland, which have long been recognized to have a profound impact on immunologic processes. The communication between immune and neuroendocrine systems is, however, bidirectional. The endocrine and immune systems share a common "chemical language," with both systems possessing ligands and receptors of "classical" hormones and immunoregulatory mediators. Studies in the early to mid 1980s demonstrated that monocyte-derived or recombinant interleukin-1 (IL-1) causes secretion of hormones of the hypothalamic-pituitary-adrenal (HPA) axis, establishing that immunoregulators, known as cytokines, play a pivotal role in this bidirectional communication between the immune and neuroendocrine systems. The subsequent 10-15 years have witnessed demonstrations that numerous members of several cytokine families increase the secretory activity of the HPA axis. Because this neuroendocrine action of cytokines is mediated primarily at the level of the central nervous system, studies investigating the mechanisms of HPA activation produced by cytokines take on a more broad significance, with findings relevant to the more fundamental question of how cytokines signal the brain. This article reviews published findings that have documented which cytokines have been shown to influence hormone secretion from the HPA axis, determined under what physiological/pathophysiological circumstances endogenous cytokines regulate HPA axis activity, established the possible sites of cytokine action on HPA axis hormone secretion, and identified the potential neuroanatomic and pharmacological mechanisms by which cytokines signal the neuroendocrine hypothalamus.  相似文献   

4.
Nur77 is a member of the steroid receptor superfamily and is known to be expressed in animals under stress. We studied the role of nur77 in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis during the stress response using a murine pituitary corticotrope cell line, AtT-20. Corticotropin-releasing hormone (CRH), a stress mediator in the HPA axis, induced the expression of nur77 transiently in AtT-20 cells. Gel shift assay showed that nur77 bound to negative glucocorticoid responsive element (nGRE) in the promoter of the human proopiomelanocortin (POMC) gene and the formation of the nur77-nGRE complex increased after treatment of the cells with CRH. Negative GRE is known to be necessary for the negative regulation by glucocorticoid of the POMC gene expression. In stable transformants of AtT-20 cells expressing a human homolog of nur77, NAK-1, at a high level, glucocorticoid-mediated inhibition of both POMC mRNA induction and ACTH secretion was significantly lower than that in the NAK-1-non-expressing cells (P < 0.001). These results strongly suggest that nur77 antagonizes the negative feedback effect of glucocorticoid on the synthesis and secretion of ACTH in pituitary corticotropes. This suggests that nur77 plays an important role in the pituitary gland in the biological adaptation to overcome stress.  相似文献   

5.
These studies further evaluated the relative role of mineralocorticoid (type I) and glucocorticoid (type II) receptors in mediating corticosteroid feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Acute treatment of rats with the selective mineralocorticoid receptor antagonist, RU28318 (50 mg/kg sc), produced elevated basal corticosterone levels in the morning, but had no effect on basal corticosterone levels in the evening or on restraint stress corticosterone levels at either time of day. Acute treatment with the selective glucocorticoid receptor antagonist, RU40555 (30 mg/kg sc) had no effect on basal or restraint stress corticosterone levels at either time of day. However, combined treatment with RU28318 and RU40555 produced an elevation of evening basal corticosterone levels (and morning basal on one occasion) and produced an increase in corticosterone levels during and after stress at both times of day. In a separate experiment conducted in the morning, the combined RU28318 and RU40555 treatment also produced elevated ACTH responses during restraint stress. Based on available corticosteroid receptor measures, the RU28318 treatment was estimated to selectively occupy approximately 85% of mineralocorticoid receptors in rat brain, whereas the RU40555 treatment was estimated to selectively occupy approximately 50% of glucocorticoid receptors in rat brain. We conclude that mineralocorticoid receptor activation is necessary and sufficient to maintain low basal corticosterone levels during the circadian trough, whereas glucocorticoid receptor activation is necessary to constrain corticosterone secretion during the circadian peak or during acute stress. However, even during the circadian peak or acute stress, mineralocorticoid receptor activation plays an important role in facilitating the glucocorticoid receptor dependent regulation of HPA axis activity by corticosterone.  相似文献   

6.
BACKGROUND: An age-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is well recognised in animals, but still remains controversial in humans. There is increasing interest that raised corticosteroid levels, due to activation of the HPA axis, may cause both depressive symptoms and cognitive impairments. Steroid effects on cognition may be via the hippocampus, a major site of corticosteroid action and an important structure involved in learning and memory. METHOD: To investigate this further, we examined the relationship between the dexamethasone suppression test, cognitive function, depressive symptoms and hippocampal atrophy on magnetic resonance imaging (MRI) in 32 normal controls, 49 subjects with NINCDS/ADRDA Alzheimer's disease and 51 patients with DSM-III-R Major Depression. RESULTS: Controlling for differences in dexamethasone concentrations, post-dexamethasone cortisol levels were related to advancing age in controls and depressed subjects. However, among subjects with Alzheimer's disease, post-dexamethasone cortisol levels were independently associated with both minor depressive symptoms and hippocampal atrophy on MRI. CONCLUSION: An association between advancing age and increased HPA axis dysregulation is supported for controls and depressed subjects. In Alzheimer's disease, HPA axis changes were associated with depressive symptoms and hippocampal atrophy. Longitudinal studies are now needed to determine the causal direction of these associations.  相似文献   

7.
Early-life stimulation (e.g., brief handling) attenuates the behavioral and neuroendocrine responses to stressors encountered in adulthood, particularly with respect to activation of hypothalamic-pituitary-adrenal (HPA) activity. In contrast, if neonates were subjected to a more severe stressor, such as protracted separation from the dam or exposure to an endotoxin, then the adult response to a stressor was exaggerated. These early-life experiences program HPA functioning, including negative feedback derived from stimulation of hippocampal glucocorticoid receptors, and corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) coexpression in PVN neurons, to modify the response to subsequent stressor experiences. The persistent variations of HPA activity observed in handled/stimulated animals may stem from alterations in dam-pup interactions (e.g. increased arched-back feeding, licking, grooming). In addition genetic makeup is critical in determining stress reactivity. For instance, BALB/cByJ mice are more reactive to stressors than C57BL/6ByJ mice, exhibiting greater HPA hormonal alterations and behavioral disturbances. BALB/cByJ also fail to acquire a spatial learning response in a Morris water-maze paradigm, which has been shown to be correlated with hippocampal cell loss associated with aging. Early-life handling of BALB/cByJ mice prevented these performance deficits and attenuated the hypersecretion of ACTH and corticosterone elicited by stressors. The stressor reactivity may have been related to maternal and genetic factors. When BALB/cByJ mice were raised by a C57BL/6ByJ dam, the excessive stress-elicited HPA activity was reduced, as were the behavioral impairments. However, cross-fostering the more resilient C57BL/6ByJ mice to a BALB/cByJ dam failed to elicit the behavioral disturbances. It is suggested that genetic factors may influence dam-pup interactive styles and may thus proactively influence the response to subsequent stressors among vulnerable animals. In contrast, in relatively hardy animals the early-life manipulations may have less obvious effects.  相似文献   

8.
Isoamyl nitrite (IAN) is a member of the family of volatile organic nitrites that exert vasodilatory effects and have recently exhibited a considerable potential for inhalation abuse. In an effort to provide mechanistic insight into the neurotoxic effects and abuse potential of these agents, the present study was designed to evaluate the acute effects of IAN on the hypothalamo-pituitary-adrenal (HPA) axis. Attempts were also made to correlate the neuroendocrine effects of IAN with its pharmacokinetic profile. Male Sprague-Dawley rats were exposed to 600 or 1200 ppm IAN by inhalation for 10 or 30 min. Following exposure, adrenocorticotropic hormone (ACTH) and corticosterone in plasma and corticotropin-releasing factor (CRF) in three brain regions (hypothalamus, hippocampus, and frontal cortex) were determined by radioimmunoassay. Levels of IAN in the three brain regions as well as in blood were measured by gas chromatography to determine the target tissue concentrations responsible for neuroendocrine changes. Uptake of IAN into blood and all brain regions was very rapid, as stable concentrations were achieved within 10 min of exposure and maintained for 30 min of continuous inhalation. Plasma corticosterone decreased significantly after 10 min inhalation of both IAN doses, and returned to control levels after 30 min. Moreover, plasma ACTH was significantly increased by 10 and 30 min of exposure to 600 and 1200 ppm IAN, while hypothalamic CRF increased significantly after 30 min of exposure to the 600 ppm dose. These latter findings suggest activation of the hypothalamus and pituitary due to a reduction in negative feedback resulting from the initial decrease in corticosterone. Although plasma ACTH was greatly increased after 30 min, plasma corticosterone levels were unchanged, indicating that IAN primarily acts to inhibit the synthesis or secretion of adrenal steroids and that activation of the HPA axis is not involved in the behavioral manifestations of IAN inhalation. These compensatory effects of HPA axis regulation, and possibly the vasodilatory properties of IAN, also likely precluded the establishment of definitive relationships between observed changes in hormone levels and blood or regional brain concentrations of the inhalant.  相似文献   

9.
To determine whether altered noradrenergic activation of the hypothalamo-pituitary-adrenal (HPA) axis contributes to the attenuated neuroendocrine response to stress observed during lactation, the effect of intracerebroventricular injection of the alpha1-agonist methoxamine (100 microg) was compared between virgin and lactating rats. Virgin rats showed significant increases in plasma corticosterone after methoxamine, reaching 317 +/- 44 ng/ml at 10 min and remaining significantly elevated for more than 120 min, but lactating rats showed no significant increase in corticosterone levels. Furthermore, methoxamine induced an increase in paraventricular nucleus (PVN) CRF messenger RNA expression in virgin, but not lactating, animals. Both groups of rats exhibited comparable elevations in plasma PRL after methoxamine treatment. Arginine vasopressin messenger RNA expression within the parvocellular PVN was greater in the lactating animals than in the virgin controls, but methoxamine injection was without further effect. Studies performed on ovariectomized virgin rats and ovariectomized rats receiving estradiol or progesterone replacement failed to reproduce the attenuated HPA responses seen after methoxamine treatment, although methoxamine-induced PRL levels were greatly increased by estradiol, probably arising from an effect on hormone synthesis. In vitro electrophysiological recordings of PVN neurons in hypothalamic slices from proestrous virgin and lactating rats showed that 45-52% of neurons in both groups exhibited excitatory responses to 10(-4) M methoxamine, but there was a differential response to 10(-5) M methoxamine, with PVN neurons from lactating animals failing to show a response. These data show a selective down-regulation of alpha1-mediated activation of the HPA axis in lactating animals. This may contribute to the attenuated stress-induced activation of the HPA axis during lactation.  相似文献   

10.
The notion that chronic stress fosters disease by activating the hypothalamic-pituitary-adrenocortical (HPA) axis is featured prominently in many theories. The research linking chronic stress and HPA function is contradictory, however, with some studies reporting increased activation, and others reporting the opposite. This meta-analysis showed that much of the variability is attributable to stressor and person features. Timing is an especially critical element, as hormonal activity is elevated at stressor onset but reduces as time passes. Stressors that threaten physical integrity, involve trauma, and are uncontrollable elicit a high, flat diurnal profile of cortisol secretion. Finally, HPA activity is shaped by a person's response to the situation; it increases with subjective distress but is lower in persons with posttraumatic stress disorder. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Adult male and female rats were housed for 2 weeks in a Visible Burrow System resulting in the development of strong dominant-subordinate relationships among the male rats. Neuroendocrine measures indicated that the subordinate rats, and to a lesser extent dominant rats, experienced chronic HPA axis hyperstimulation during the 2 week experience. This paper focuses on the consequences of this chronic social stress on cytosolic type II corticosteroid receptor binding in the spleen. In the first study, rats were adrenalectomized 18 h prior to sacrifice in order to measure total cellular receptor protein levels in each animal. In spite of the severity of the social stress, there was no decrease in splenic type II corticosteroid receptor binding levels in these short-term adrenalectomized animals. In the second study, rats were left adrenal-intact. Corticosteroid receptor levels in these adrenal-intact animals reflect the level of receptors (available receptors) that were unoccupied by endogenous hormone at the time of sacrifice. Both subordinate and dominant rats had fewer available splenic type II receptors than control rats, suggesting that a greater proportion of receptors in subordinate and dominant rats were occupied and activated by endogenous hormone at the time of sacrifice than in control rats. The differences in available receptor levels were not a function of total plasma corticosterone levels at the time of sacrifice (mean corticosterone levels were the same for control and subordinate rats). Instead, the differences in available receptor levels may have been a function of plasma corticosteroid binding globulin (CBG) levels which regulate free corticosterone levels. There was a large reduction in plasma CBG levels of subordinate (-70%) and dominant (-40%) rats relative to control rats, and there was a significant correlation between plasma CBG level and available type II receptors in the spleen. These results suggest that a decrease in CBG levels as a result of chronic social stress led to greater access of free corticosterone hormone to type II receptors in the spleen than is typically present in rats under basal or acute stress conditions. This result illustrates one mechanism by which chronic stress may have a greater impact than acute stress on splenic immune function.  相似文献   

12.
The biobehavioral consequences of psychogenic stress were examined using neuroendocrine and ethological methods in a captive colony of common marmosets (Callithrix jacchus jacchus). Specifically, hypothalamic-pituitary-adrenal (HPA) axis reactivity was evaluated as a function of gender and social status in four consecutive social environments [(1) stable heterosexual pairs; (2) isolation; (3) unstable peer groups; and (4) stable peer groups], by measuring both basal plasma cortisol, adrenocorticotropic hormone (ACTH) and beta-endorphin concentrations and responsiveness of these hormones to dexamethasone, ovine corticotropin-releasing hormone (oCRH), and ACTH1-24. Socially stressful conditions, such as isolation and peer group formation, were associated with increased HPA axis function and behavioral arousal, and individual profiles were related to gender and social status. Hormonal levels prior to group formation predicted subsequent status in peer groups. Basal morning concentrations of plasma cortisol, as well as cortisol responsiveness to dexamethasone suppression, were sensitive indices of HPA axis arousal during periods of social stress. The context-dependent development of hormonal and behavioral profiles, reminiscent of depression and/or anorexia nervosa, suggests that the common marmoset may be a useful model of psychiatric hypercortisolism.  相似文献   

13.
Uncontrolled diabetes mellitus causes both a sustained activation of the hypothalamic-pituitary-adrenal (HPA) axis and reduced expression of corticotrophin-releasing hormone (CRH) mRNA in the hypothalamic paraventricular nucleus (PVN). To investigate the role of glucocorticoids in the regulation of CRH mRNA expression in the PVN of diabetic rats, we studied surgically adrenalectomized (ADX) and sham-operated male Sprague-Dawley rats 4 days after i.v. injection of streptozotocin (STZ; 65 mg/kg i.v.) or vehicle. Among sham-operated animals, AM plasma corticosterone levels were significantly increased in diabetic as compared to nondiabetic animals (1.46+/-0.54 vs. 0.22+/-0.05 microg/dl; P <0.05), and were positively correlated to both plasma ACTH levels (r = 0.74; P = 0.015) and adrenal gland weight (r = 0.70; P = 0.025). In contrast, CRH mRNA levels measured in the PVN by in situ hybridization were inversely related to the plasma corticosterone level (r = -0.68; P = 0.045). In a second experiment, both diabetic and nondiabetic ADX rats received a continuous subcutaneous infusion of either corticosterone at one of two doses or its vehicle for 4 days. Among vehicle-treated ADX animals, STZ diabetes raised hypothalamic CRH mRNA levels, in contrast to the tendency for diabetes to lower CRH mRNA in intact rats in the first experiment. Corticosterone administration lowered CRH mRNA comparably in both diabetic and nondiabetic ADX rats. In contrast, diabetes reduced arginine vasopressin (AVP) mRNA levels in the PVN of ADX rats and blunted the inhibitory effect of glucocorticoids on AVP mRNA levels in this setting. We conclude (1) glucocorticoids are necessary for the effect of diabetes to reduce hypothalamic CRH gene expression, since diabetes causes a paradoxical increase in CRH mRNA levels in adrenalectomized animals; (2) glucocorticoid inhibition of hypothalamic CRH gene expression is intact in diabetic rats; and (3) the activation of the HPA axis by diabetes is associated with a proportionate decrease in PVN CRH gene expression. These findings support a model in which hypothalamic factors additional to CRH activate the HPA axis in uncontrolled diabetes, and inhibit CRH gene expression indirectly by negative glucocorticoid feedback.  相似文献   

14.
Attenuation of hypothalamo-pituitary-adrenal (HPA) function in laboratory rodents has been found to reduce the reinforcing effects of cocaine. To examine whether attenuation of HPA function reduces the effects of cocaine in humans, one female and seven male 'crack' cocaine abusers were pretreated with three doses of ketoconazole (0, 600, 1200 mg), an inhibitor of adrenocorticoid biosynthesis, 1 h before receiving cocaine. Three doses of smoked cocaine (0, 12, 50 mg) were administered in counterbalanced order under each ketoconazole condition. Ketoconazole dose-dependently reduced cocaine-induced cortisol, but not adrenocorticotropin (ACTH) release, and attenuated the cocaine-induced increase in heart rate and blood pressure. Plasma ACTH levels were more predictive of blood pressure changes than either cocaine or cortisol levels. Suppression of cortisol secretion was not associated with a reduction in ratings of the subjective effects of cocaine. These results support a role for the HPA axis in the cardiovascular effects of cocaine, but do not support a role for the HPA axis in the subjective effects of cocaine. To the extent that self-administration can be predicted by subjective effects, these results further argue that the HPA axis does not play a critical role in cocaine self-administration by humans.  相似文献   

15.
There is a substantive literature on the behavioral effects of psychosocial stressors on schizophrenia. More recently, research has been conducted on neurohormonal indicators of stress responsivity, particularly cortisol release resulting from activation of the hypothalamic-pituitary-adrenal (HPA) axis. This article integrates the psychosocial and biological literatures on stress in schizophrenia, and it offers specific hypotheses about the neural mechanisms involved in the effects of stressors on the diathesis. Both the behavioral and biological data indicate that stress worsens symptoms and that the diathesis is associated with a heightened response to stressors. A neural mechanism for these phenomena is suggested by the augmenting effect of the HPA axis on dopamine (DA) synthesis and receptors. Assuming the diathesis for schizophrenia involves an abnormality in DA receptors, it is proposed that the HPA axis acts as a potentiating system by means of its effects on DA. At the same time, DA receptor abnormality and hippocampal damage render the patient hypersensitive to stress. This neural diathesis-stress model is consistent with findings on prenatal factors and brain abnormalities in schizophrenia. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Studies in animals showing hippocampal atrophy and associated memory deficits in stress and aging have implications for stress and aging in humans. Clinical studies in traumatized human populations with posttraumatic stress disorder (PTSD) have replicated studies in animals, showing reduction in volume of the hippocampus measured with magnetic resonance imaging and associated memory deficits. Trauma at different stages of development (early childhood abuse versus trauma in later life due to combat) may influence the nature of memory deficits and hippocampal atrophy. Studies in aging human subjects are consistent with animal studies, although future research is needed in this area. The similarities between biological findings related to cortisol and the hippocampus in stress and aging in both animal and human studies raises the question of whether PTSD can be seen as a form of accelerated aging. Evidence that stress affects the hippocampus and the capacity for learning has broad implications for public health policy, underlying the need for additional resources in this important area and a reexamination of our understanding of factors influencing academic achievement.  相似文献   

17.
Nur77 is an orphan member of the steroid receptor superfamily (nuclear receptor). Nur77 family consists of three subtypes and the subtypes show functional redundancy. Nur77 family plays an important role in the apoptotic process of negative selection of T-cells. Moreover, nur77 seems to play a pivotal role in the hypothalamic-pituitary-adrenal axis (HPA axis) during stress response. Nur77 antagonizes the negative feedback effect on the production and secretion of ACTH by glucocorticoid in corticotrope cells of the pituitary gland.  相似文献   

18.
In rodents, two types of glucocorticoid receptors, the mineralocorticoid (MR; type I) and the glucocorticoid (type II) receptors, have been demonstrated to play a role in hypothalamic-pituitary-adrenal (HPA) axis regulation. Because MR shows a very high affinity for cortisol, it has been suggested that MR plays an important role in restraint of CRH and ACTH secretion during the nadir of the circadian rhythm. Although a number of studies have established the importance of MR in rodents, the functional role of MR in humans has not been determined. These studies evaluated whether spironolactone, an MR antagonist, had a detectable effect on HPA axis regulation in humans, and whether the effect was greatest during the evening, when plasma cortisol concentrations are in the MR range. Compared to the placebo day, after a single dose of spironolactone at either 0800 or 1600 h, there is a significant increase in plasma cortisol, which is preceded by a rise in ACTH and beta-endorphin. A significant effect of spironolactone on cortisol secretion was demonstrated with no differences between the morning and evening. Because the effect of spironolactone on cortisol was short lived, a second experiment was conducted using two doses of spironolactone, again sampling in the morning and evening. After two doses of spironolactone, plasma cortisol levels showed a significant and sustained spironolactone-induced elevation for the entire sampling period. However, neither plasma beta-endorphin nor ACTH was increased compared to levels on the placebo day. These data suggest that MR appear to play a clear role in HPA axis regulation during the time of the circadian peak as well as the trough. Furthermore, MR blockade may affect the sensitivity of the adrenal to ACTH.  相似文献   

19.
Interactions between the hypothalamic-pituitary-adrenocortical (HPA) system and melatonin secretion have been demonstrated, but only the effects of melatonin on the activity of the HPA system have been studied in man. Alterations of melatonin secretion described as low-melatonin syndrome have been demonstrated in patients suffering from a major depressive episode, and an inhibitory factor on melatonin secretion has been postulated. We investigated whether corticotropin-releasing hormone (CRH), which is thought to be involved in HPA abnormalities in depressed patients, can also suppress melatonin secretion in healthy volunteers. Ten healthy male human volunteers in a double-blind study design received randomized hourly intravenous injections from 08.00 to 18.00 h that contained 10 micrograms human CRH, 1 microgram adrenocorticotropic hormone (ACTH), or placebo to simulate pulsatile hormone secretion. Plasma melatonin and cortisol responses during the treatment and nocturnal sleep electroencephalograms after the treatment were recorded. Administration of CRH reduced melatonin secretion significantly below values obtained after administration of placebo and ACTH. Cortisol secretion was significantly enhanced by ACTH in comparison to both placebo and CRH. Electroencephalographic sleep parameters revealed no treatment effects. Our findings suggest that CRH has an inhibitory effect on the pineal secretion of melatonin in normal man. A mechanism via a release of cortisol was not supported by our results. Secondary hormonal effects from changes in nocturnal sleep architecture were excluded. Further investigation of the action of CRH on melatonin secretion as well as the mutual feedback between the HPA system and the pineal gland may extend our knowledge of neuroendocrine alterations mediating the adaptive response to stress and the eventual involvement in the pathogenesis of depression.  相似文献   

20.
Memory impairments, which occur regularly across species as a result of aging, disease and psychological insults (for example, stress), constitute a useful area for investigation into the neurobiological basis of learning and memory. Memory researchers have identified the hippocampus as a crucial brain structure involved in key aspects of memory formation. The most widely accepted putative mechanisms of memory storage in this structure are LTP and LTD. The hippocampus is enriched with receptors for corticosterone (a glucocorticoid hormone released in response to stress) and it plays a role in glucocorticoid negative feedback and, therefore, some hippocampal functioning might be particularly susceptible to stress. In support of this view, stress-induced modifications in learning, synaptic plasticity and endangerment of neurons have been seen in the hippocampus. Stress and glucocorticoids appear to exert a metaplastic effect through the modulation of Ca2+ levels. We propose a synaptic model that provides a conceptual scaffold to structure our understanding of the manifold actions of stress on the hippocampus. Accordingly, we suggest that stress-induced metaplasticity could disrupt Ca2+ homeostasis and thus endanger hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号