首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effects of filler loading on the curing characteristics, swelling behavior, and mechanical properties of natural rubber compounds were studied using a conventional vulcanization system. Recycle rubber powder (RRP), carbon black (CB) (N550), and calcium carbonate (CaCO3) were used as fillers and the loading range was from 0 to 50 phr. Results show that the scorch time, t 2, and cure time, t 90, decrease with increase in filler loading. At a similar filler loading, RRP shows shortest t 2 and t 90 followed by CB and calcium carbonate. The tensile strength, tensile modulus, and hardness increase with increase in CB loading, whereas elongation at break, resilience, and swelling properties show opposite trend. For RRP and calcium carbonate filled natural rubber compounds, the tensile strength increases up to 10 phr and starts to deteriorate at higher filler loading. The other properties such as tensile modulus, hardness, elongation at break, resilience, and swelling percentage show a small change (increase or decrease) with increase in RRP and calcium carbonate loading in natural rubber compounds. Overall results indicate that RRP can be used as a cheapener to replace calcium carbonate in natural rubber compounds where improved mechanical properties are not critical.  相似文献   

2.
Organoclay filled natural rubber (NR) nanocomposites were prepared using a laboratory two-roll mill. The effect of organoclay loading up to 10 phr was studied. The vulcanized nanocomposites were subjected to mechanical, thermal, and swelling tests. The results indicated that the tensile strength and elongation at break reached optimum at 4 phr of organoclay loading, and the incorporation of organoclay increased the tensile modulus and hardness of NR nanocomposites. The thermal degradation was shifted to a higher temperature and the weight loss decreased with incorporation of organoclay. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to characterize the microstructure of NR nanocomposites. Results from TEM and XRD show the formation of intercalated and exfoliated individual silicate layers of organoclay filled NR nanocomposites particularly at low filler loading (< 4 phr).  相似文献   

3.
Curing characteristics, tensile properties, morphological studies of tensile fractured surfaces using scanning electron microscopy (SEM), and the extent of rubber filler interactions of rattan‐powder‐filled natural rubber (NR) composites were investigated as a function of filler loading and silane coupling agent (CA). NR composites were prepared by the incorporation of rattan powder at filler loading range of 0–30 phr into a NR matrix with a laboratory size two roll mill. The results indicate that in the presence of silane CA, scorch time (ts2), and cure time (t90) of rattan‐powder‐filled NR composites were shorten, while, maximum torque (MH) increased compared with NR composites without silane CA. Tensile strength and tensile modulus of composites were enhanced whereas elongation at break reduced in the presence of silane CA mainly due to increase in rubber‐filler interaction. It is proven by SEM studies that the bonding between the filler and rubber matrix has improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Curing characteristics, tensile properties, fatigue life, swelling behavior, and morphology of waste tire dust (WTD)/carbon black (CB) hybrid filler filled natural rubber (NR) compounds were studied. The WTD/CB hybrid filler filled NR compounds were compounded at 30 phr hybrid filler loading with increasing partial replacement of CB at 0, 10, 15, 20, and 30 phr. The curing characteristics such as scorch time, t2 and cure time, t90 decreased and increased with increment of CB loading in hybrid filler (30 phr content), respectively. Whereas maximum torque (MHR) and minimum torque (ML) increased with increasing CB loading. The tensile properties such as tensile strength, elongation at break, and tensile modulus of WTD/CB hybrid filler filled NR compounds showed steady increment as CB loading increased. The fatigue test showed that fatigue life increased with increment of CB loading. Rubber–filler interaction, Qf/Qg indicated that the NR compounds with the highest CB loading exhibited the highest rubber–filler interactions. Scanning electron microscopy (SEM) micrographs of tensile and fatigue fractured surfaces and rubber–filler interaction study supported the observed result on tensile properties and fatigue life. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Thermoplastic elastomer composites of ethylene vinyl acetate (EVA)/natural rubber (NR) blends filled with palm ash were prepared by melt-mixing using a Haake Rheomix Polydrive R600/610 at 120°C with rotor speed of 50 rpm for 10 minutes. Increase in palm ash loading in composites resulted in increase the value of stabilization toque, Young's modulus and swelling resistance of the composites, but decreased the tensile strength and elongation at break. Scanning electron microscope micrographs revealed that higher filler loading resulted in agglomeration of palm ash in the composites. When smaller particle size of palm ash was used, further improvement in tensile strength, elongation at break, swelling resistance and stabilization torque value were observed.  相似文献   

6.
Halloysite nanotubes (HNTs)-filled natural rubber (NR) nanocomposites with various filler loading were prepared by using a two-roll mill. The addition of HNTs increased the scorch time, cure time and maximum torque but reduced curing rate index. The tensile strength increased up to 20 phr of HNTs and then decreased. When HNTs loading increased, the elongations of break, swelling percentage and fatigue life were decreased while modulus at 100% and 300% elongation and thermal properties showed inversely. The dispersion of HNTs inside the NR matrix is shown from SEM images.  相似文献   

7.
《国际聚合物材料杂志》2012,61(3-4):325-333
Abstract

Natural rubber (NR) composites were prepared by incorporating rubberwood fibres at different loadings into the NR matrix in a mixing mill according to a base formulation. Tensile properties, swelling measurement and tensile fracture surfaces of gum and composites with 0, 10, 20, 30 and 50 phr of rubberwood fibres were studied. Incorporation of rubberwood fibres in the composites increases the tensile modulus but reduces the tensile strength and elongation at break. Scanning electron microscopy (SEM) studies and swelling measurement indicate that the increasing rubberwood loading has weakened the rubber-filler interactions.  相似文献   

8.
The effect of filler loading and epoxidation on curing characteristics, dynamic properties, tensile properties, morphology, and rubber-filler interactions of paper-sludge-filled natural rubber compounds have been studied. Two different types of natural rubber, SMR L and ENR 50, having 0% and 50% of epoxidation and conventional vulcanization were used. Paper sludge was used as a filler and the loading range was from 0 to 40 phr. Compounding was carried out using a laboratory-sized two-roll mill. The scorch time for both rubber compounds decreased with filler loading. The cure time was found to decrease with increasing filler content for SMR L vulcanizates, whereas for ENR 50, the cure time seemed to be independent of the filler loading. Dynamic properties, i.e., maximum elastic torque, viscous torque, and tan delta, increase with filler loading in both grades of natural rubber. Results also indicate that both rubbers show increment in tensile modulus but inverse trend for elongation at break and tensile strength. However, for a fixed filler loading, ENR 50 compounds consistently exhibit higher maximum torque, modulus at 100% elongation, and modulus at 300% elongation, but lower elongation at break than SMR L compounds. In the case of tensile strength, ENR 50 possesses higher tensile strength than SMR L at 10 to 20 phr, but the difference is quite small at 30 and 40 phr. These findings might be associated with better rubber-filler interaction between the polar hydroxyl group of cellulose fiber and the epoxy group of ENR 50.  相似文献   

9.
Kenaf powder (KP) was incorporated into recycled high density polyethylene (rHDPE)/natural rubber (NR) blend using an internal mixer at 165°C and rotor speed of 50 rpm. The tensile strength and elongation at break of the composites decreased, while the tensile modulus increased with increasing filler loading. The water absorption was found to increase as the filler content increased. The maleic anhydride grafted natural rubber was prepared and used to enhance the composites performance. The addition of MANR as a coupling agent improved the tensile properties of rHDPE/NR/KP biocomposites. The water absorption was also reduced with the addition of MANR.  相似文献   

10.
The influence of coprecipitated hexagonal barium ferrite BaFe12O19 phase on the cure characteristics and dynamic properties of natural rubber–ferrite composites has been studied as a function of ferrite loading up to 220 phr (part per hundred part of rubber). Unusual characteristics of coprecipitated ferrite particles were discovered by scanning electron microscope. The results show that scorch time t10 and cure time t90 decrease dramatically with increasing ferrite content up to critical ferrite loading. After 160 phr, t90 increases sharply with increasing ferrite content, in contrast to saturation of t10. Minimum torque recorded normal behavior at low ferrite loading, whereas it decreases with increasing ferrite content at high ferrite loading because of dilution effects. The storage modulus E′ and loss modulus E″ decrease with increasing temperature. The loss tangents (tanδ) of the composites are greater than those of the pure rubber. Linear viscoelastic behavior was observed as a result of the homogeneity and compatibility of the composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Bentonite (Bt) with irregular shape and surface morphology was used as a new type of filler in EPDM. EPDM/Bt composites were prepared using a laboratory size two-roll mill by adding 0 to 70 phr Bt. The effects of Bt loading on curing characteristics, morphology, tensile and thermal properties of EPDM/Bt composite were studied. Scorch and curing time were decreased with 0 to 30 phr loading and increased subsequently at 50 and 70 phr. Tensile strength and elongation at break (Eb) were increased with increasing Bt loading from 0 to 50 phr and decreased at 70 phr, whereas the tensile modulus (M100%) shows an increasing trend with increasing Bt loading. Thermogravimetric analysis shows the enhancements of thermal properties with increasing Bt loading. Morphological studies of tensile fracture surfaces of EPDM/Bt composite proves good interaction between Bt particles and EPDM at 50 phr and formation of Bt agglomerates at 70 phr.  相似文献   

12.
The purpose of this work is to study the reinforcement effect of modified coal gangue (CG) on natural rubber (NR); carbon black (CB) was taken as reference filler. The addition of CG and CB to NR with the total filler loading fixed at 35 phr. The orthogonal experiment was employed to reveal the modification conditions on reinforcing properties. The results show that modification conditions such as weight ratio of coupling agent (CA), calcining temperature (CT), and calcining time (CM) affect the strengthening properties of CG, and CA is the most important factor influencing the tensile strength of NR, the order of influence can be expressed as CA > CT > CM. The optimum modification conditions are CT 800°C, CM 1 hr, and CA 2%. 300% modulus of NR composites filled with modified CG (17.5 phr)/CB (17.5phr) hybrid filler is similar to NR filled with CB alone at same filler loading, while elongation at break increases significantly for existent of CG. The effect of heat treatment and modification conditions of CG were tested by particle size distribution, scanning electron microscopy, Fourier transform infrared spectra, and X‐ray diffraction. The results show that the specific surface area of CG increased and hydroxyl group in crystal structure of CG removed under heat treatment. Dynamic mechanical analysis results show that the storage modulus and tan δ of CG filled NR composites are higher while Tg is less than that of CB, indicating the existence of a strong and stiff interface between filler and NR matrix. POLYM. COMPOS., 35:1911–1917, 2014. © 2014 Society of Plastics Engineers  相似文献   

13.
The effect of filler loading and size on commercially available silica (Vulcasil C) and value added silica (ultrafine) as filler in SMR L grade natural rubber were studied. Vulcasil C with particle size ranged from 10 µm–20 µm whilst ultrafine (1 µm–3 µm) was loaded in SMR L compound at 4 different loadings. The curing characteristics, tensile properties and swelling behavior were studied. At similar filler loading, ultrafine-filled vulcanizates exhibited shorter scorch time and cure time. It also shows higher tensile strength and elongation at break up to 20 phr filler loading and exhibit lower swelling ratio compared to Vulcasil C-filled vulcanizates.  相似文献   

14.
利用硝酸氧化法对碳纳米管(CNTs)进行纯化,并用环氧天然橡胶(ENR)进行改性处理。结合胶质量分数测定结果表明, ENR用量15%(质量)时效果最佳。采用胶乳凝聚法制备CNTs/天然橡胶(NR)母料。煤矸石粉(CG)经高温煅烧和表面改性处理。 将CNTs/天然橡胶(NR)母料、CG和炭黑(CB)通过机械混炼法与天然橡胶及配合剂混合,制备CB/CG/CNTs/NR复合材料,并对复合材料进行硫化特性及物理机械性能。结果表明: CNTs延迟硫化效应明显;相比炭黑,CG对硫化具有促进作用。硫化特性和甲苯溶胀法测定结果表明,在填料份数相同的条件下,单独由CB填充的NR有最大的交联密度,CNTs对交联密度影响不明显。物理机械性能测试结果表明,当CG:CB:CNTs=17.5:16.5:1(Phr)时,NR硫化胶的300%定伸应力和扯断伸长率明显高于单独由CB填充NR,而拉伸强度与之接近,复合填料样填充NR具有较好的综合性能。扫描电镜测试结果表明,复合填料在NR基体中分布均匀。  相似文献   

15.
An effect of nanosize CaCO3 on physical, mechanical, thermal and flame retarding properties of PBR was compared with commercial CaCO3 and fly ash filled PBR. CaCO3 at the rate of 9, 15, and 21 nm were added in polybutadiene rubber (PBR) at 4, 8 and 12 wt.% separately. Properties such as swelling index, specific gravity, tensile strength, Young's modulus, elongation at break, modulus at 300% elongation, glass transition temperature, decomposition temperature, flame retardency, hardness, and abrasion resistances were determined. The swelling index decreased and specific gravity increased with reduction in particle size of fillers in PBR composites. There was significant improvement in physical, mechanical, thermal and flame-retarding properties of PBR composites due to a reduction in the particle size of fillers. Maximum improvement in mechanical and flame retarding properties was observed at 8 wt.% of filler loading. This increment in properties was more pronounced in 9 nm size CaCO3. The results were not appreciable above 8 wt.% loading of nano fillers because of agglomeration of nanoparticles. In addition, an attempt was made to consider some thermodynamically aspects of resulting system. The cross-linkage density has been assessed by Flory-Rehner equation in which free energy was increased with increase in filler content.  相似文献   

16.
The objective of this study was to investigate three kinds of filler with completely different morphology on mechanical properties of natural rubber (NR). Coal gangue (CG) are derived from natural deposits are composed principally by illite and quartz. CG, carbon black (CB), and multiwalled carbon nanotube (CNT) were used as hybrid fillers in NR. CNTs were dispersed into NR latex by ultrasonic irradiation and then the mixed latex were coagulated to obtain the CNTs/NR masterbatch, then mechanical mixing method was employed to prepare the CG/CB/CNTs/NR composites. The addition of CG, CB, and CNTs to NR was varied with the total filler loading fixed at 35 phr. The mechanical properties of NR composites were studied in terms of tensile and dynamic mechanical analysis (DMA). The results showed that the tensile strength and modulus 300% (M300) of all hybrid samples were higher than the composites only loaded CG; and the highest tensile strength of NR loaded with hybrid fillers achieved at sample of loading amount of CG 17.5, CB 15.5, and CNTs 2 phr, whose M300 and elongation at break was obviously higher than that of only CB loaded NR composites; The inclusion CG improves the tensile strength of NR without the sacrifice of its extensibility, while CB and CNTs brings together the enhancement in the ultimate strength and the reduction in the extensibility. DMA results revealed that the existence of CG can improve the dispersion of CB and CNTs in NR matrix. POLYM. COMPOS., 37:3083–3092, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
采用干法和湿法两种混炼工艺制备了螺旋纳米碳纤维(HCNFs)/炭黑(CB)/天然橡胶(NR)复合材料,通过扫描电镜、拉伸试验机和应变扫描仪分别对所制备复合材料的界面形貌、力学性能和Payne效应进行了测试分析,考察了混炼方式对复合材料宏观力学性能及Payne效应的影响。结果表明,与纯CB填料相比,在干湿两种混炼方式下,添加适量的HCNFs(1~6份)能提高HCNFs/CB/NR复合材料的300%定伸应力、扯断伸长率、拉伸强度和硬度。与干法混炼相比,湿法混炼能明显增强HCNFs/CB/NR复合材料的Payne效应,并提升在HCNFs高添加量(2~6份)条件下的拉伸强度和扯断伸长率,这主要源于湿法混炼能够有效改善HCNFs在橡胶基质中的分散性。  相似文献   

18.
Natural rubber composites were prepared by the incorporation of palm ash at different loadings into a natural rubber matrix with a laboratory‐size two‐roll mill (160 × 320 mm2) maintained at 70 ± 5°C in accordance with the method described by ASTM D 3184–89. A coupling agent, maleated natural rubber (MANR), was used to improve the mechanical properties of the natural rubber composites. The results indicated that the scorch time and cure time decreased with increasing filler loading, whereas the maximum torque exhibited an increasing trend. Increasing the palm ash loading increased the tensile modulus, but the tensile strength, fatigue life, and elongation at break decreased. The rubber–filler interactions of the composites decreased with increasing filler loading. Scanning electron microscopy of the tensile fracture surfaces of the composites and rubber–filler interaction studies showed that the presence of MANR enhanced the interfacial interaction of the palm ash filler and natural rubber matrix. The presence of MANR also enhanced the tensile properties and fatigue life of palm‐ash‐filled natural rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
An acrylic dispersed nanosized calcium carbonate filler was added to a prevulcanized latex compound in different amounts. The effect of filler content on the curing time, modulus, tensile strength, elongation at break (Eb) before and after ageing, and the morphology of the films was investigated. Results showed that the curing time decreased with filler loading because of the increased interaction between the filler and rubber matrix, as reflected by the decrease in the apparent swelling index. Modulus at 100% elongation and modulus at 300% elongation increased with filler loading. Tensile strength and Eb increased up to 10 phr of filler loading and then decreased again. Aged films showed improved mechanical properties compared to those of unaged films. Micrographs showed that agglomeration occurred as the filler content was increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1550–1556, 2005  相似文献   

20.
In order to improve high reinforcement properties of natural rubber (NR), SiO2@HCNFs as novel double-phase nanofillers at low content have been loaded in NR by using mechanical mixing method. The morphologies and structures of SiO2@HCNFs and NR composites were characterized, and the performances of NR composites were measured. The results show that compared with pure N330/NR, the modulus at 300% strain, tensile strength, elongation at break of NR composites increase by 10.7, 17.9, and 9.0%, respectively, at only 2.5 phr SiO2@HCNFs content. Meanwhile, the volume abrasion of NR composites is also dramatically reduced at 2.5 phr SiO2@HCNFs content, about 53.4% less than that of N330/NR, though the shore hardness increases by only 3.7%. It is also found that NR composites reinforced by SiO2@HCNFs at 2.5 phr content have much higher hardness and abrasion performance than HCNFs/NR. The DMA results show that high wet skid resistance and low rolling resistance of NR composites were also achieved by loading 6.5 phr SiO2@HCNFs. The unique structure of SiO2@HCNFs double-phase nanofillers plays a crucial role in properties of NR composites, in virtue of the significant synergetic reinforcing effect of both HCNFs and silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号