首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel immune algorithm is suggested for finding Pareto-optimal solutions to multiobjective optimization problems based on opt-aiNET, the artificial immune system algorithm for multi-modal optimization. In the proposed algorithm, a randomly weighted sum of multiple objectives is used as a fitness function, and a local search algorithm is incorporated to facilitate the exploitation of the search space. Specifically, a new truncation algorithm with similar individuals (TASI) is proposed to preserve the diversity of the population. Also, a new selection operator is presented to create the new population based on TASI. Simulation results on seven standard problems (ZDT2, ZDT6, DEB, VNT, BNH, OSY and KIT) show that the proposed algorithm is able to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the vector immune algorithm and the elitist non-dominated sorting genetic system.  相似文献   

2.
This article presents a novel methodology for dealing with continuous box-constrained multi-objective optimization problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to obtain multiple elements of the Pareto optimal set. The search is directed by a well-distributed set of weight vectors, each of which defines a scalarization problem that is solved by deforming a simplex according to the movements described by Nelder and Mead's method. Considering an MOP with n decision variables, the simplex is constructed using n+1 solutions which minimize different scalarization problems defined by n+1 neighbor weight vectors. All solutions found in the search are used to update a set of solutions considered to be the minima for each separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs among the different conflicting objectives, while maintaining a proper representation of the Pareto optimal front. In this article, it is shown that a well-designed strategy using just mathematical programming techniques can be competitive with respect to the state-of-the-art multi-objective evolutionary algorithms against which it was compared.  相似文献   

3.
D. Lei  Z. Wu 《国际生产研究杂志》2013,51(24):5241-5252
The machine‐part cell formation with respect to multiple objectives has been an attractive search topic since 1990 and many methodologies have been applied to consider simultaneously more than one objective. However, the majority of these works unify the various objectives into a single objective. The final result of such an approach is a compromise solution, whose non‐dominance is not guaranteed. A Pareto‐optimality‐based multi‐objective tabu search (MOTS) algorithm is presented for the machine‐part grouping problems with multiple objectives: it minimizes the total cost, which includes intra‐ and inter‐cell transportation cost and machine investment cost, minimizing the intra‐cell loading unbalance and minimizing the inter‐cell loading unbalance. A new approach is developed to maintain the archive storing non‐dominated solutions produced by the tabu search. The comparisons and analysis show that the proposed algorithm has considerable promise in multi‐objective cell design.  相似文献   

4.
Evolutionary multi-objective optimization (EMO) has received significant attention in recent studies in engineering design and analysis due to its flexibility, wide-spread applicability and ability to find multiple trade-off solutions. Optimal machining parameter determination is an important matter for ensuring an efficient working of a machining process. In this article, the use of an EMO algorithm and a suitable local search procedure to optimize the machining parameters (cutting speed, feed and depth of cut) in turning operations is described. Thereafter, the efficiency of the proposed methodology is demonstrated through two case studies – one having two objectives and the other having three objectives. Then, EMO solutions are modified using a local search procedure to achieve a better convergence property. It has been demonstrated here that a proposed heuristics-based local search procedure in which the problem-specific heuristics are derived from an innovization study performed on the EMO solutions is a computationally faster approach than the original EMO procedure. The methodology adopted in this article can be used in other machining tasks or in other engineering design activities.  相似文献   

5.
In this article, an improved Archive-based Micro Genetic Algorithm (referred to as AMGA2) for constrained multi-objective optimization is proposed. AMGA2 is designed to obtain fast and reliable convergence on a wide variety of optimization problems. AMGA2 benefits from the existing literature in that it borrows and improves upon several concepts from existing multi-objective optimization algorithms. Improvements and modifications to the existing diversity assessment techniques and genetic variation operators are also proposed. AMGA2 employs a new kind of selection strategy that attempts to reduce the probability of exploring less desirable search regions. The proposed AMGA2 is a steady-state genetic algorithm that maintains an external archive of best and diverse solutions and a very small working population. AMGA2 has been designed to facilitate the decoupling of the working population, the external archive, and the number of solutions desired as the outcome of the optimization process. Comprehensive benchmarking and comparison of AMGA2 with the current state-of-the-art multi-objective optimization algorithms demonstrate its improved search capability.  相似文献   

6.
This article presents a novel framework for the multi-objective optimization of offshore renewable energy mooring systems using a random forest based surrogate model coupled to a genetic algorithm. This framework is demonstrated for the optimization of the mooring system for a floating offshore wind turbine highlighting how this approach can aid in the strategic design decision making for real-world problems faced by the offshore renewable energy sector. This framework utilizes validated numerical models of the mooring system to train a surrogate model, which leads to a computationally efficient optimization routine, allowing the search space to be more thoroughly searched. Minimizing both the cost and cumulative fatigue damage of the mooring system, this framework presents a range of optimal solutions characterizing how design changes impact the trade-off between these two competing objectives.  相似文献   

7.
Multi-objective optimization using heuristic methods has been established as a subdiscipline that combines the fields of heuristic computation and classical multiple criteria decision making. This article presents the Non-dominated Archiving Ant Colony Optimization (NA-ACO), which benefits from the concept of a multi-colony ant algorithm and incorporates a new information-exchange policy. In the proposed information-exchange policy, after a given number of iterations, different colonies exchange information on the assigned objective, resulting in a set of non-dominated solutions. The non-dominated solutions are moved into an offline archive for further pheromone updating. Performance of the NA-ACO is tested employing two well-known mathematical multi-objective benchmark problems. The results are promising and compare well with those of well-known NSGA-II algorithms used in real-world multi-objective-optimization problems. In addition, the optimization of reservoir operating policy with multiple objectives (i.e. flood control, hydropower generation and irrigation water supply) is considered and the associated Pareto front generated.  相似文献   

8.
Many real-world engineering design problems involve the simultaneous optimization of several conflicting objectives. In this paper, a method combining the struggle genetic crowding algorithm with Pareto-based population ranking is proposed to elicit trade-off frontiers. The new method has been tested on a variety of published problems, reliably locating both discontinuous Pareto frontiers as well as multiple Pareto frontiers in multi-modal search spaces. Other published multi-objective genetic algorithms are less robust in locating both global and local Pareto frontiers in a single optimization. For example, in a multi-modal test problem a previously published non-dominated sorting GA (NSGA) located the global Pareto frontier in 41% of the optimizations, while the proposed method located both global and local frontiers in all test runs. Additionally, the algorithm requires little problem specific tuning of parameters.  相似文献   

9.
This article presents a particle swarm optimizer (PSO) capable of handling constrained multi-objective optimization problems. The latter occur frequently in engineering design, especially when cost and performance are simultaneously optimized. The proposed algorithm combines the swarm intelligence fundamentals with elements from bio-inspired algorithms. A distinctive feature of the algorithm is the utilization of an arithmetic recombination operator, which allows interaction between non-dominated particles. Furthermore, there is no utilization of an external archive to store optimal solutions. The PSO algorithm is applied to multi-objective optimization benchmark problems and also to constrained multi-objective engineering design problems. The algorithmic effectiveness is demonstrated through comparisons of the PSO results with those obtained from other evolutionary optimization algorithms. The proposed particle swarm optimizer was able to perform in a very satisfactory manner in problems with multiple constraints and/or high dimensionality. Promising results were also obtained for a multi-objective engineering design problem with mixed variables.  相似文献   

10.
Ant colony optimization (ACO) is a metaheuristic that takes inspiration from the foraging behaviour of a real ant colony to solve the optimization problem. This paper presents a multiple colony ant algorithm to solve the Job-shop Scheduling Problem with the objective that minimizes the makespan. In a multiple colony ant algorithm, ants cooperate to find good solutions by exchanging information among colonies which are stored in a master pheromone matrix that serves the role of global memory. The exploration of the search space in each colony is guided by different heuristic information. Several specific features are introduced in the algorithm in order to improve the efficiency of the search. Among others is the local search method by which the ant can fine-tune their neighbourhood solutions. The proposed algorithm is tested over set of benchmark problems and the computational results demonstrate that the multiple colony ant algorithm performs well on the benchmark problems.  相似文献   

11.
Many engineering optimization problems include unavoidable uncertainties in parameters or variables. Ignoring such uncertainties when solving the optimization problems may lead to inferior solutions that may even violate problem constraints. Another challenge in most engineering optimization problems is having different conflicting objectives that cannot be minimized simultaneously. Finding a balanced trade-off between these objectives is a complex and time-consuming task. In this paper, an optimization framework is proposed to address both of these challenges. First, we exploit a self-calibrating multi-objective framework to achieve a balanced trade-off between the conflicting objectives. Then, we develop the robust counterpart of the uncertainty-aware self-calibrating multi-objective optimization framework. The significance of this framework is that it does not need any manual tuning by the designer. We also develop a mathematical demonstration of the objective scale invariance property of the proposed framework. The engineering problem considered in this paper to illustrate the effectiveness of the proposed framework is a popular sizing problem in digital integrated circuit design. However, the proposed framework can be applied to any uncertain multi-objective optimization problem that can be formulated in the geometric programming format. We propose to consider variations in the sizes of circuit elements during the optimization process by employing ellipsoidal uncertainty model. For validation, several industrial clock networks are sized by the proposed framework. The results show a significant reduction in one objective (power, on average 38 %) as well as significant increase in the robustness of solutions to the variations. This is achieved with no significant degradation in the other objective (timing metrics of the circuit) or reduction in its standard deviation which demonstrates a more robust solution.  相似文献   

12.
A novel binary successive approximation-based evolutionary search strategy has been proposed to solve the economic-emission load dispatch problem by searching the generation pattern of committed units. Inequality constraints are taken care of during the search of a generation pattern. To meet the demand, a slack generator is introduced to compensate the perturbation of unmet load during the search. To determine the trade-off relationship between conflicting objectives in the non-inferior domain, the weighting method is exploited. Once the trade-off has been obtained, fuzzy set theory helps the decision maker to choose the optimal operating point over the trade-off curve and adjust the generation schedule in the most preferred manner. Generally the weights are regulated in a systematic manner, which is a time-consuming process. To reduce the time to arrive at the best compromising solutions, the weight pattern assigned to objectives are searched for more significant digits in a fixed number of iterations. Performance of the algorithm is investigated on economic load dispatch problems of different sizes and complexity having non-convex cost curves where conventional gradient-based methods are inapplicable. This technique has emerged as the useful optimisation tool for handling network losses, ramp rate limits, valve point loading and prohibited zone avoidance into account to determine the global optimal dispatch solution as well as optimal operating point in the noninferior domain for any number of the goals. The method is applied on various test systems and better results are achieved with reference to emission (Kg/h), however when compared with other techniques, the proposed method has lower performance with reference to losses (MW) and cost ($/h).  相似文献   

13.
Power system generation scheduling is an important issue both from the economical and environmental safety viewpoints. The scheduling involves decisions with regards to the units start-up and shut-down times and to the assignment of the load demands to the committed generating units for minimizing the system operation costs and the emission of atmospheric pollutants.As many other real-world engineering problems, power system generation scheduling involves multiple, conflicting optimization criteria for which there exists no single best solution with respect to all criteria considered. Multi-objective optimization algorithms, based on the principle of Pareto optimality, can then be designed to search for the set of nondominated scheduling solutions from which the decision-maker (DM) must a posteriori choose the preferred alternative. On the other hand, often, information is available a priori regarding the preference values of the DM with respect to the objectives. When possible, it is important to exploit this information during the search so as to focus it on the region of preference of the Pareto-optimal set.In this paper, ways are explored to use this preference information for driving a multi-objective genetic algorithm towards the preferential region of the Pareto-optimal front. Two methods are considered: the first one extends the concept of Pareto dominance by biasing the chromosome replacement step of the algorithm by means of numerical weights that express the DM’ s preferences; the second one drives the search algorithm by changing the shape of the dominance region according to linear trade-off functions specified by the DM.The effectiveness of the proposed approaches is first compared on a case study of literature. Then, a nonlinear, constrained, two-objective power generation scheduling problem is effectively tackled.  相似文献   

14.
Finding a suitable solution to an optimization problem designed in science is a major challenge. Therefore, these must be addressed utilizing proper approaches. Based on a random search space, optimization algorithms can find acceptable solutions to problems. Archery Algorithm (AA) is a new stochastic approach for addressing optimization problems that is discussed in this study. The fundamental idea of developing the suggested AA is to imitate the archer's shooting behavior toward the target panel. The proposed algorithm updates the location of each member of the population in each dimension of the search space by a member randomly marked by the archer. The AA is mathematically described, and its capacity to solve optimization problems is evaluated on twenty-three distinct types of objective functions. Furthermore, the proposed algorithm's performance is compared vs. eight approaches, including teaching-learning based optimization, marine predators algorithm, genetic algorithm, grey wolf optimization, particle swarm optimization, whale optimization algorithm, gravitational search algorithm, and tunicate swarm algorithm. According to the simulation findings, the AA has a good capacity to tackle optimization issues in both unimodal and multimodal scenarios, and it can give adequate quasi-optimal solutions to these problems. The analysis and comparison of competing algorithms’ performance with the proposed algorithm demonstrates the superiority and competitiveness of the AA.  相似文献   

15.
Taboo search is a heuristic optimization technique which works with a neighbourhood of solutions to optimize a given objective function. It is generally applied to single objective optimization problems. Taboo search has the potential for solving multiple objective optimization (MOO) problems, because it works with more than one solution at a time, and this gives it the opportunity to evaluate multiple objective functions simultaneously. In this paper, a taboo search based algorithm is developed to find Pareto optimal solutions in multiple objective optimization problems. The developed algorithm has been tested with a number of problems and compared with other techniques. Results obtained from this work have proved that a taboo search based algorithm can find Pareto optimal solutions in MOO effectively.  相似文献   

16.
Pareto archived dynamically dimensioned search (PA-DDS) is a parsimonious multi-objective optimization algorithm with only one parameter to diminish the user's effort for fine-tuning algorithm parameters. This study demonstrates that hypervolume contribution (HVC) is a very effective selection metric for PA-DDS and Monte Carlo sampling-based HVC is very effective for higher dimensional problems (five objectives in this study). PA-DDS with HVC performs comparably to algorithms commonly applied to water resources problems (?-NSGAII and AMALGAM under recommended parameter values). Comparisons on the CEC09 competition show that with sufficient computational budget, PA-DDS with HVC performs comparably to 13 benchmark algorithms and shows improved relative performance as the number of objectives increases. Lastly, it is empirically demonstrated that the total optimization runtime of PA-DDS with HVC is dominated (90% or higher) by solution evaluation runtime whenever evaluation exceeds 10 seconds/solution. Therefore, optimization algorithm runtime associated with the unbounded archive of PA-DDS is negligible in solving computationally intensive problems.  相似文献   

17.
One of the first multiple objective versions of the tabu search (TS) algorithm is proposed by the author. The idea of applying TS to multiple objective optimization is inspired from its solution structure. TS works with more than one solution (neighbourhood solutions) at a time and this situation gives the opportunity to evaluate multiple objectives simultaneously in one run. The selection and updating stages are modified to enable the original TS algorithm to work with more than one objective. In this paper, the multiple objective tabu search (MOTS) algorithm is applied to multiple objective non‐linear optimization problems with continuous variables using a simple neighbourhood strategy. The algorithm is applied to four mechanical components design problems. The results are compared with several other solution techniques including multiple objective genetic algorithms. It is observed that MOTS is able to find better and much wider spread of solutions than the reported ones. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a hybrid Pareto-based local search (PLS) algorithm for solving the multi-objective flexible job shop scheduling problem. Three minimisation objectives are considered simultaneously, i.e. the maximum completion time (makespan), the total workload of all machines, and the workload of the critical machine. In this study, several well-designed neighbouring approaches are proposed, which consider the problem characteristics and thus can hold fast convergence ability while keep the population with a certain level of quality and diversity. Moreover, a variable neighbourhood search (VNS) based self-adaptive strategy is embedded in the hybrid algorithm to utilise the neighbouring approaches efficiently. Then, an external Pareto archive is developed to record the non-dominated solutions found so far. In addition, a speed-up method is devised to update the Pareto archive set. Experimental results on several well-known benchmarks show the efficiency of the proposed hybrid algorithm. It is concluded that the PLS algorithm is superior to the very recent algorithms, in term of both search quality and computational efficiency.  相似文献   

19.
A multi‐start threshold accepting algorithm with an adaptive memory (MS‐TA) is proposed to solve multiple objective continuous optimization problems. The aim of this paper is to find efficiently multiple Pareto‐optimal solutions. Comparisons are carried out with multiple objective taboo search algorithm and genetic algorithm. Experiments on literature problems show that the proposed algorithm is more effective. The presented multi‐start adaptive algorithm improves the best‐known results by a significant margin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
随着电力、天然气和热力网络耦合紧密程度不断加深,综合能源系统协同优化成为了新的研究热点。提出一种适用于含非凸约束条件的综合能源系统多目标优化问题的改进NSGA-Ⅱ算法,通过维护全局的帕累托最优解集提升解的搜索效率,同时采用动态调整法,提高在高维等式约束下找到可行解的概率。算例分析验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号