首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.  相似文献   

2.
This study proposes a novel momentum-type particle swarm optimization (PSO) method, which will find good solutions of unconstrained and constrained problems using a delta momentum rule to update the particle velocity. The algorithm modifies Shi and Eberhart's PSO to enhance the computational efficiency and solution accuracy. This study also presents a continuous non-stationary penalty function, to force design variables to satisfy all constrained functions. Several well-known and widely used benchmark problems were employed to compare the performance of the proposed PSO with Kennedy and Eberhart's PSO and Shi and Eberhart's modified PSO. Additionally, an engineering optimization task for designing a pressure vessel was applied to test the three PSO algorithms. The optimal solutions are presented and compared with the data from other works using different evolutionary algorithms. To show that the proposed momentum-type PSO algorithm is robust, its convergence rate, solution accuracy, mean absolute error, standard deviation, and CPU time were compared with those of both the other PSO algorithms. The experimental results reveal that the proposed momentum-type PSO algorithm can efficiently solve unconstrained and constrained engineering optimization problems.  相似文献   

3.
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.  相似文献   

4.
This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.  相似文献   

5.
The particle swarm optimization (PSO) algorithm is an established nature-inspired population-based meta-heuristic that replicates the synchronizing movements of birds and fish. PSO is essentially an unconstrained algorithm and requires constraint handling techniques (CHTs) to solve constrained optimization problems (COPs). For this purpose, we integrate two CHTs, the superiority of feasibility (SF) and the violation constraint-handling (VCH), with a PSO. These CHTs distinguish feasible solutions from infeasible ones. Moreover, in SF, the selection of infeasible solutions is based on their degree of constraint violations, whereas in VCH, the number of constraint violations by an infeasible solution is of more importance. Therefore, a PSO is adapted for constrained optimization, yielding two constrained variants, denoted SF-PSO and VCH-PSO. Both SF-PSO and VCH-PSO are evaluated with respect to five engineering problems: the Himmelblau’s nonlinear optimization, the welded beam design, the spring design, the pressure vessel design, and the three-bar truss design. The simulation results show that both algorithms are consistent in terms of their solutions to these problems, including their different available versions. Comparison of the SF-PSO and the VCH-PSO with other existing algorithms on the tested problems shows that the proposed algorithms have lower computational cost in terms of the number of function evaluations used. We also report our disagreement with some unjust comparisons made by other researchers regarding the tested problems and their different variants.  相似文献   

6.
A generic constraint handling framework for use with any swarm-based optimization algorithm is presented. For swarm optimizers to solve constrained optimization problems effectively modifications have to be made to the optimizers to handle the constraints, however, these constraint handling frameworks are often not universally applicable to all swarm algorithms. A constraint handling framework is therefore presented in this paper that is compatible with any swarm optimizer, such that a user can wrap it around a chosen swarm algorithm and perform constrained optimization. The method, called separation-sub-swarm, works by dividing the population based on the feasibility of individual agents. This allows all feasible agents to move by existing swarm optimizer algorithms, hence promoting good performance and convergence characteristics of individual swarm algorithms. The framework is tested on a suite of analytical test function and a number of engineering benchmark problems, and compared to other generic constraint handling frameworks using four different swarm optimizers; particle swarm, gravitational search, a hybrid algorithm and differential evolution. It is shown that the new framework produces superior results compared to the established frameworks for all four swarm algorithms tested. Finally, the framework is applied to an aerodynamic shape optimization design problem where a shock-free solution is obtained.  相似文献   

7.
Swarm algorithms such as particle swarm optimization (PSO) are non-gradient probabilistic optimization algorithms that have been successfully applied for global searches in complex problems such as multi-peak problems. However, application of these algorithms to structural and mechanical optimization problems still remains a complex matter since local optimization capability is still inferior to general numerical optimization methods. This article discusses new swarm metaphors that incorporate design sensitivities concerning objective and constraint functions and are applicable to structural and mechanical design optimization problems. Single- and multi-objective optimization techniques using swarm algorithms are combined with a gradient-based method. In the proposed techniques, swarm optimization algorithms and a sequential linear programming (SLP) method are conducted simultaneously. Finally, truss structure design optimization problems are solved by the proposed hybrid method to verify the optimization efficiency.  相似文献   

8.
This paper compares the performance of three swarm intelligence algorithms for the optimization of hard engineering problems. The algorithms tested were bacterial foraging optimization (BFO), particle swarm optimization (PSO), and artificial bee colony (ABC). Besides the regular BFO, two other variants reported in the literature were also included in the study: adaptive BFO and swarming BFO. Both PSO and ABC were tested using the regular algorithm and variants that include explosion (mass extinction). Three optimization problems of structural engineering were used: minimization of the cost of a welded beam, minimization of the construction cost of a pressure vessel, and minimization of the total weight of a 10‐bar plane truss. All problems are strongly constrained. The algorithms were evaluated using two criteria: quality of solutions and the number of function evaluations. The results show that PSO presented the best balance between these two criteria. For the optimization problems approached in this paper, we can also conclude that the explosion procedure resulted in no significant improvements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.  相似文献   

10.
Most image segmentation methods based on clustering algorithms use single-objective function to implement image segmentation. To avoid the defect, this paper proposes a new image segmentation method based on a multi-objective particle swarm optimization (PSO) clustering algorithm. This unsupervised algorithm not only offers a new similarity computing approach based on electromagnetic forces, but also obtains the proper number of clusters which is determined by scale-space theory. It is experimentally demonstrated that the applicability and effectiveness of the proposed multi-objective PSO clustering algorithm.  相似文献   

11.
In this article, a new proposal of using particle swarm optimization algorithms to solve multi-objective optimization problems is presented. The algorithm is constructed based on the concept of Pareto dominance, as well as a state-of-the-art ‘parallel’ computing technique that intends to improve algorithmic effectiveness and efficiency simultaneously. The proposed parallel particle swarm multi-objective evolutionary algorithm (PPS-MOEA) is tested through a variety of standard test functions taken from the literature; its performance is compared with six noted multi-objective algorithms. The computational experience gained from the first two experiments indicates that the algorithm proposed in this article is extremely competitive when compared with other MOEAs, being able to accurately, reliably and robustly approximate the true Pareto front in almost every tested case. To justify the motivation behind the research of the parallel swarm structure, the computational results of the third experiment confirm the PPS-MOEA's merit in solving really high-dimensional multi-objective optimization problems.  相似文献   

12.
Weian Guo  Wuzhao Li  Qun Zhang  Lei Wang  Qidi Wu 《工程优选》2014,46(11):1465-1484
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.  相似文献   

13.
Evolutionary algorithms cannot effectively handle computationally expensive problems because of the unaffordable computational cost brought by a large number of fitness evaluations. Therefore, surrogates are widely used to assist evolutionary algorithms in solving these problems. This article proposes an improved surrogate-assisted particle swarm optimization (ISAPSO) algorithm, in which a hybrid particle swarm optimization (PSO) is combined with global and local surrogates. The global surrogate is not only used to predict fitness values for reducing computational burden but also regarded as a global searcher to speed up the global search process of PSO by using an efficient global optimization algorithm, while the local one is constructed for a local search in the neighbourhood of the current optimal solution by finding the predicted optimal solution of the local surrogate. Empirical studies on 10 widely used benchmark problems and a real-world structural design optimization problem of a driving axle show that the ISAPSO algorithm is effective and highly competitive.  相似文献   

14.
针对粒子群优化算法容易陷入局部最优的问题,提出了一种基于粒子群优化与分解聚类方法相结合的多目标优化算法。算法基于参考向量分解的方法,通过聚类优选粒子策略来更新全局最优解。首先,通过每条均匀分布的参考向量对粒子进行聚类操作,来促进粒子的多样性。从每个聚类中选择一个具有最小聚合函数适应度值的粒子,以平衡收敛性和多样性。动态更新全局最优解和个体最优解,引导种群均匀分布在帕累托前沿附近。通过仿真实验,与4种粒子群多目标优化算法进行对比。实验结果表明,提出的算法在27个选定的基准测试问题中获得了20个反世代距离(IGD)最优值。  相似文献   

15.
It has been over ten years since the pioneering work of particle swarm optimization (PSO) espoused by Kennedy and Eberhart. Since then, various modifications, well suited to particular application areas, have been reported widely in the literature. The evolutionary concept of PSO is clear-cut in nature, easy to implement in practice, and computationally efficient in comparison to other evolutionary algorithms. The above-mentioned merits are primarily the motivation of this article to investigate PSO when applied to continuous optimization problems. The performance of conventional PSO on the solution quality and convergence speed deteriorates when the function to be optimized is multimodal or with a large problem size. Toward that end, it is of great practical value to develop a modified particle swarm optimizer suitable for solving high-dimensional, multimodal optimization problems. In the first part of the article, the design of experiments (DOE) has been conducted comprehensively to examine the influences of each parameter in PSO. Based upon the DOE results, a modified PSO algorithm, termed Decreasing-Weight Particle Swarm Optimization (DW-PSO), is addressed. Two performance measures, the success rate and number of function evaluations, are used to evaluate the proposed method. The computational comparisons with the existing PSO algorithms show that DW-PSO exhibits a noticeable advantage, especially when it is performed to solve high-dimensional problems.  相似文献   

16.
This article presents a particle swarm optimization algorithm for solving general constrained optimization problems. The proposed approach introduces different methods to update the particle's information, as well as the use of a double population and a special shake mechanism designed to avoid premature convergence. It also incorporates a simple constraint-handling technique. Twenty-four constrained optimization problems commonly adopted in the evolutionary optimization literature, as well as some structural optimization problems are adopted to validate the proposed approach. The results obtained by the proposed approach are compared with respect to those generated by algorithms representative of the state of the art in the area.  相似文献   

17.
Two techniques for the numerical treatment of multi-objective optimization problems—a continuation method and a particle swarm optimizer—are combined in order to unite their particular advantages. Continuation methods can be applied very efficiently to perform the search along the Pareto set, even for high-dimensional models, but are of local nature. In contrast, many multi-objective particle swarm optimizers tend to have slow convergence, but instead accomplish the ‘global task’ well. An algorithm which combines these two techniques is proposed, some convergence results for continuous models are provided, possible realizations are discussed, and finally some numerical results are presented indicating the strength of this novel approach.  相似文献   

18.
This article presents an enhanced particle swarm optimization (EPSO) algorithm for size and shape optimization of truss structures. The proposed EPSO introduces a particle categorization mechanism into the particle swarm optimization (PSO) to eliminate unnecessary structural analyses during the optimization process and improve the computational efficiency of the PSO-based structural optimization. The numerical investigation, including three benchmark truss optimization problems, examines the efficiency of the EPSO. The results demonstrate that the particle categorization mechanism greatly reduces the computational requirements of the PSO-based approaches while maintaining the original search capability of the algorithms in solving optimization problems with computationally cheap objective function and expensive constraints.  相似文献   

19.
In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).  相似文献   

20.
Guanghui Wang  Jie Chen  Bin Xin 《工程优选》2013,45(9):1107-1127
This article proposes a decomposition-based multi-objective differential evolution particle swarm optimization (DMDEPSO) algorithm for the design of a tubular permanent magnet linear synchronous motor (TPMLSM) which takes into account multiple conflicting objectives. In the optimization process, the objectives are evaluated by an artificial neural network response surface (ANNRS), which is trained by the samples of the TPMSLM whose performances are calculated by finite element analysis (FEA). DMDEPSO which hybridizes differential evolution (DE) and particle swarm optimization (PSO) together, first decomposes the multi-objective optimization problem into a number of single-objective optimization subproblems, each of which is associated with a Pareto optimal solution, and then optimizes these subproblems simultaneously. PSO updates the position of each particle (solution) according to the best information about itself and its neighbourhood. If any particle stagnates continuously, DE relocates its position by using two different particles randomly selected from the whole swarm. Finally, based on the DMDEPSO, optimization is gradually carried out to maximize the thrust of TPMLSM and minimize the ripple, permanent magnet volume, and winding volume simultaneously. The result shows that the optimized TPMLSM meets or exceeds the performance requirements. In addition, comparisons with chosen algorithms illustrate the effectiveness of DMDEPSO to find the Pareto optimal solutions for the TPMLSM optimization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号