首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以麦秸杆纤维(WSF)和高密度聚乙烯(PE?HD)为原料,以白云石粉、硅灰石粉及滑石粉为填充料,通过熔融混炼及注射成型的方法制备了PE-HD/WSF/填料复合材料,并通过差示扫描量热仪、扫描电子显微镜和电子万能试验机等考察分析了填料种类及含量对复合材料结晶性能、微观形貌和力学性能等的影响。结果表明,在WSF的含量为40 %的配比下,复合材料的拉伸和弯曲强度随填料含量的增多呈现先增大后减小的趋势;当填料含量为5 %时,PE-HD/WSF复合材料的各项力学性能达到最佳,且硅灰石的增强效果优于白云石、滑石粉,结晶速率也最大;而用填料部分代替PE-HD则会使复合材料的耐水性减弱,同样在5 %的填料含量下得到吸水率的极小值,白云石增强的复合材料吸水率最低;拉伸试样断面形貌显示,细小填料颗粒不同程度地镶嵌在WSF与基体PE-HD之间,减少了WSF与PE-HD的间隙,改善了界面结合性。  相似文献   

2.
In this study, natural sawdust fillers from acacia were mixed with unsaturated polyester resin (UPR), which was prepared by recycling of polyethylene terephthalate (PET) waste bottles to prepare sawdust/UPR composite. PET wastes were recycled through glycolysis and depolymerized to produce a formulation for the resin. The effects of alkali treatment, filler content, and filler size on the tensile, flexural, hardness, and water absorption of the composites were investigated. The results show that the modulus of both tensile and flexural increased with increasing filler contents, but the tensile and flexural strength of composites decreased. The size of sawdust also played a significant role in the mechanical properties, with smaller size sawdust producing higher strength and modulus. This is due to the greater surface area for filler–matrix interaction. The results also show that alkali treatment causes a better adhesion between sawdust and UPR matrix and improves the mechanical properties of the composites. Furthermore, surface treatment reduced the water absorption of composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
This work focuses on the performance of Jatropha deoiled cake (JOC) as filler for medium‐density polyethylene. The biocomposites were prepared using a melt‐compounding technique. Maleated polyethylene (MPE) was used as a reactive additive to promote polymer/filler interfacial adhesion. The mechanical, thermodynamic mechanical and morphological properties of the resultant composites were investigated. The results show that the incorporation of JOC into the matrix reduced tensile, flexural, and impact strengths compared with the pure matrix. Moreover, tensile and flexural moduli were increased. The composites prepared with MPE had better mechanical properties and lower water uptake, indicating an enhancement in the interfacial interaction between JOC and polyethylene systems. The storage modulus was increased by the increase in filler loading and decreased when MPE was used. The composites loss modulus curves revealed two glass transitions indicating partial miscible blends. Scanning electron microscopy analysis for maleated composites showed a relatively homogeneous morphology with few left cavities, and the filler particle size is smaller compared to nontreated composites. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
New models are proposed to describe the mechanical behavior of particulate composite membranes. The mechanical properties of particulate composite membranes are strongly influenced by interfacial phenomena. When adhesion between the filler particles and matrix is poor, the mechanical properties of composite membranes deteriorate with the addition of filler to the matrix. The addition of filler particles to the matrix has a reinforcement effect when adhesion between the particles and matrix is good. The presence of interphase (interfacial shell) around the particles can strongly influence the mechanical properties of particulate composite membranes. Some of the key factors affecting the mechanical properties of composite membranes are interphase‐to‐matrix moduli ratio, core‐to‐shell moduli ratio, and shell‐to‐core radii ratio. Theproposed models are verified using 15 sets of experimental data on the mechanical properties of particulate composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

5.
用废弃环氧模塑料粉作为填料,采用模压成型的方法制备了聚氯乙烯(PVC)/废弃环氧模塑料复合材料,研究了废弃环氧模塑料粉的组成和性质及其与PVC的界面黏结情况,分别考察了温度和废弃环氧模塑料粉含量对复合材料力学性能和动态力学性能的影响。结果表明,废弃环氧模塑料粉具有一定的活性,能与极性树脂PVC发生作用而产生界面接枝;在模压温度为200 ℃,废弃环氧模塑料粉含量为60 %(质量分数,下同)时,复合材料的拉伸强度为32.13 MPa,弯曲强度和冲击强度分别为60.70 MPa和4.68 kJ/m2,基本可满足相关产品的要求;随着废弃环氧模塑料粉含量的增加,复合材料的储能模量提高,损耗峰向高温方向移动,且损耗峰形先变宽后变窄。  相似文献   

6.
In this study, the effect of single and hybrid nanofillers on the thermal, mechanical, and physical properties of polypropylene composites were carried out. This nanocomposite was compounded using two-roll mill mixing method and the filler content was fixed at 4 vol % loading. The single filler used is synthetic diamond (SD), boron nitride (BN), and carbon nanotube (MWNT). The hybrid system was composed by addition of MWNT into single SD and BN. The prepared samples were characterized by thermal properties, tensile and flexural, and these results were supported by the morphology, void content, and melt flow index values. The result showed that the hybrid composite with combination of BN and SD with MWNT indicate higher thermal conductivity and thermal stability and lower thermal expansion. However, no significant improvements in tensile and flexural strengths were observed due to large formation of agglomeration as being captured by SEM micrographs. Furthermore, the existence of higher percent void content suggests low adhesion and poor compatibility between hybrid filler and matrix. This caused detrimental effect of strength of hybrid composites rather than single filler composites.  相似文献   

7.
陈义忠  吴曼  谢恒来  刘新民  郭庆杰 《化工学报》2015,66(12):5163-5170
以废旧汽车保险杠(WPP)为基体,废弃线路板非金属粉(NWPCB)为填料,通过熔融共混的方法制备了系列WPP/NWPCB复合材料。在此基础上,用乙烯-辛烯共聚物(POE)和马来酸酐接枝聚丙烯(PP-g-MAH)对复合材料进行了协同改性,以增强复合材料的性能。力学性能测试和冲击断面微观形貌分析表明,POE显著提高了WPP/NWPCB复合材料的韧性,当POE用量为15 g·(100 g)-1时,冲击强度较改性前提高129%;PP-g-MAH能够有效改善复合材料中填料与基体相容性,当添加量为9 g·(100 g)-1时,复合材料的机械性能达到最佳,冲击强度、弯曲强度和拉伸强度较改性前分别提高7.8%、23.4%和20%。通过热重-红外联用研究了WPP/NWPCB/POE复合材料的热解过程,结果表明,复合材料在热解过程中除产生烷烃、烯烃及CO2外,还产生了少量的苯酚类芳香族化合物与HBr等有害气体,同时NWPCB填料的添加提高了复合材料中WPP的热稳定性。  相似文献   

8.
以高密度聚乙烯(PE–HD)为基体材料,剑麻纤维(SF)为增强填充材料,利用不同的偶联剂(硅烷偶联剂,钛酸酯偶联剂)改性SF,用熔融共混法制备一系列PE–HD/SF复合材料。采用扫描电子显微镜、广角X射线衍射仪、差示扫描量热仪、维卡软化仪及万能试验机等测试了复合材料的微观形貌、结晶性能、热及力学性能。结果表明,偶联剂改性的SF与PE–HD有着较好的界面结合,SF的添加使得PE–HD的结晶度下降,热变形温度提高;与未改性的SF相比,当硅烷偶联剂改性SF添加量为10%时,PE–HD基复合材料的拉伸强度、弯曲强度和冲击强度明显提高。  相似文献   

9.
This article reports the mechanical, thermal, and morphological properties of polypropylene (PP)‐chicken eggshell (ES) composites. Mechanical properties like tensile strength, tensile modulus, izod impact strength, flexural modulus of PP composites with normal (unmodified) eggshell and chemically treated ES [modified ES (MES) with isophthalic acid] have been investigated. PP–calcium carbonate (CaCO3) composites, at the same filler loadings, were also prepared and used as reference. The results showed that PP composites with chemically MES had better mechanical properties compared to the unmodified ES and CaCO3 composites. An increase of about 3–18% in tensile modulus, 4–44% in izod impact strength and 1.5–26% in flexural modulus at different filler loading was observed in MES composites as compared to unmodified ES composites. Scanning electron microscopy (SEM) micrographs of fractured tensile specimens confirmed better interfacial adhesion of MES with polymer matrix resulting into lower voids and plastic deformation resulting in improved mechanicals of the composites. TEM micrographs showed acicular needle shaped morphology for modified ES and have contributed to better dispersion which is the prime reason for enhancement of all the mechanical properties. At higher filler loading, the modulus of MES composite was found to be higher by 5% as compared to commercial CaCO3 composites. POLYM. COMPOS., 35:708–714, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
The rapid growth of environmentally sustainable and eco-friendly materials tends to the utilization of biowastes as filler in polymer matrix composites. The particulate composite with improved wettability of fillers and advanced approach can evolve polymer composites that exhibit promising applications in packaging, automobile, marine, construction, and aerospace. In the present work, one of the biowaste fillers were synthesized from Limonia acidissima shells via a top-down approach (pulverizing) and the surfaces were chemically modified using sodium hydroxide (NaOH) before they were used as fillers in vinyl ester polymer composites by different weight percentage (0, 5, 10, 15, and 20 wt%). The prepared particulate composites were characterized by mechanical properties, moisture absorption behavior, and morphology. At different filler loading the tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, hardness, density, and moisture intake tests were performed. The results reveal that the properties increased for composites filled with alkaline treated fillers for the same filler loading and found to be higher at filler loading of 15 wt%. The morphological analysis confirms the better interfacial bonding between alkali-treated particles and matrix due to the removal of non-cellulose materials from the surface of the particles.  相似文献   

11.
Two industrial wastes, fly ash (FA) and recycled polypropylene (RPP) were used to prepare a value‐added, sustainable, low cost composite material. Improving the interfacial interaction between the hydrophobic RPP matrix and the hydrophilic FA particles is important to get a good combination of properties. In order to tailor the interface, stearic acid was used as the coupling agent. The FA particles were coated with a saturated fatty acid, stearic acid (SA), in different weight % like 1, 2, 3, and 5. The SA coated fly ash particles were incorporated as filler in RPP matrix composites by melt mixing in 1 : 1 weight ratio. The composites were tested for their flexural properties, impact behavior, dynamic mechanical properties, fracture surface analysis, X‐ray diffraction (XRD) study, and differential scanning calorimetry (DSC). An increase in flexural modulus and impact strength was observed in the stearic acid coated FA/RPP composites. In 1 wt % SA treated FA/RPP (RFASA1) composites, a significant increase in glass transition temperature was observed along with an increase in crystallinity. A green, renewable, inexpensive chemical like stearic acid was thus found to be an effective coupling agent in fabrication of a composite with 50 wt % filler loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1996–2004, 2013  相似文献   

12.
木质填料种类及含量对木塑复合材料性能的影响   总被引:1,自引:0,他引:1  
赵娟  崔怡  李丙海 《塑料科技》2007,35(9):46-52
研究了木质填料的种类和含量对木塑复合材料性能的影响。实验发现:随着木粉、竹粉含量的提高,复合材料的拉伸强度、维卡软化温度、弯曲强度和弯曲模量都得到了较大幅度的提高,冲击强度、断裂伸长率和熔体流动速率有所下降。不同粒径和不同种类的木质填料对复合材料的力学性能也有明显的影响,以100目木粉制得复合材料的性能最好,DSC实验数据分析表明:木粉、竹粉含量的变化对复合材料体系的熔融温度有影响;SEM扫描冲击断口形貌表明:相容剂能够有效改善木粉与HDPE界面的相容性,提高界面黏合力,从而使复合材料的性能得到提高。  相似文献   

13.
废印刷电路板中非金属材料的回收与利用   总被引:6,自引:0,他引:6  
通过物理方法对废印刷电路板进行回收处理,研究了将非金属粉作为填料应用于聚丙烯(PP)复合材料时其复合材料的力学性能。当选用300目以细的非金属粉填充PP复合材料时,其力学性能得到了很好的提高,其中弯曲模量最大增幅为143%,弯曲强度最大增幅为69%,拉伸屈服强度最大增幅为59%。表明将非金属粉作为填料填充聚丙烯复合材料是一种可行的非金属粉利用方法。  相似文献   

14.
If a low weight percentage of crude fine fillers can improve properties of polymer materials directly without complicated chemical treatment process involved, it will be significant for many industrial applications. Our previous study indicated that a kind of Cancun natural sand could be an effective filler material for polymer composites. In this current work, the epoxy composites reinforced by this kind of natural sand particles were prepared and thermal and mechanical properties of the composites containing up to 5 wt % of the sand particles were characterized. Results showed that the highest flexural strength appears in the epoxy composite containing 1 wt % sand particles. A damage model was used to interpret the flexural properties, which showed an acceptable agreement with the experimental results. The glass transition temperature, high temperature storage modulus, and dimensional stability of the sand/epoxy composites monotonically increased with the addition of the sand particles. The sand particle/epoxy composites also displayed a noticeable enhancement in thermal conductivity. Theoretical analysis showed that in addition to conduction, other heat transport mechanisms played roles in the improved heat transmission through the composites. As a natural porous micron-scale material, Cancun sand has the potential for applications in cost-effective composites with enhanced mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
As most thermoset material, phenolic molding compound (PMC) wastes are an environmental problem. Very few recycling solutions have been proposed so far for this type of material. A mechanical recycling method to valorize these materials is proposed in this work. It relies on the use of phenolic waste as filler in thermoplastic. Such phenolic filler can increase mechanical properties (tensile, flexural) of the matrix, and be used in substitution of traditional particulate fillers such as calcium carbonate or talc. In this study, several morphological parameters influencing the final mechanical properties of a PMC‐filled polypropylene (PP) micro‐composite are studied, such as filler loading rate, particles size distribution of the filler, and interfacial adhesion between the filler and the matrix. Some structural parameters are also studied and linked with mechanical properties, such as dispersion of the filler and crystallinity of the matrix. Finally, the properties of PMC‐filled PP are compared with CaCO3‐ and talc‐filled PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45849.  相似文献   

16.
废旧线路板粉末增强复合材料的制备与性能   总被引:1,自引:0,他引:1  
废旧线路板回收处理过程中得到的基板粉末作为增强填料,采用模压成型制备废弃物填料增强不饱和聚酯复合材料,研究模压工艺参数以及废弃物粉末填料配比等对复合材料力学性能的影响规律,并初步展望了废弃物复合材料的应用。结果表明,随着模压温度、压强、模压时间和填料含量的增加,复合材料的弯曲强度先升高后降低。在优化的模压工艺参数条件下,复合材料的弯曲强度超过100MPa,冲击强度可达10kJ/m2。  相似文献   

17.
The damping coefficient (tanδ) of wood flour filled polypropylene composites, having varying filler concentrations were measured using the free vibration decay of disk‐shaped specimen, vibrating in flexural vibration mode. The damping coefficients decreased with the increase of filler load in composites. There was no significant difference in damping behavior of composites with and without compatiblizer at low filler level (upto 30%). At higher filler loading (>30%), composites with compatiblizer had lower damping coefficient suggesting improved interfacial adhesion between wood and polypropylene. The damping in composite is attributed to the damping because of the composite constituents and damping at the interface. The damping because of interface was estimated using a model and was found to increase with the increase in filler loading. At higher filler content, damping due to interface in composites with compatiblizer was significantly lower than in composites without compatiblizer suggesting a better interfacial adhesion between the wood filler and polypropylene matrix with compatiblizer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
This article deals with the usage of tamarind seed filler (TSF) as reinforcement in vinyl ester (VE) composites. The composite plates have been fabricated by compression molding machine with TSFs of varying wt% from 5 to 50 as reinforcement material, and their properties such as tensile, flexural, impact, hardness, water absorption, heat deflection tests, and thermogravimetric analysis are studied. The mechanical properties of TSF reinforced VE composites are optimum at 15 wt% filler. The tensile strength and flexural strength of TSF‐VE composites are estimated to be around 34.1 and 121 MPa, respectively. The better impact strength of TSF‐VE composites is found to be 14.02 kJ/m2, and barcol hardness can hold a value up to 42.33. Thermo gravimetric analysis and heat deflection test of TSF reinforced VE composite have improved the thermal stability. The fiber matrix interaction of the fractured mechanical testing specimen has been analyzed by scanning electron microscope. The TSF‐VE composites are used to fabricate the wheel hubcap of heavy‐duty buses, bus seat backrest cover, and silencer guard of the motorcycle. J. VINYL ADDIT. TECHNOL., 25:E114–E128, 2019. © 2019 Society of Plastics Engineers  相似文献   

19.
Composite materials formulated with a natural polyphenolic matrix (commercial tannin adhesive made from quebracho tannin extract), pine woodflour as reinforcing material, and hexamethylenetetramine as hardener were prepared and tested. Scanning electron microscopy of fractured samples was used to analyze the efficiency of the wetting and adhesion of the filler to the surrounding matrix. Thermogravimetric analysis was used in the thermal characterization of the woodflour and the tannin extract. Flexural, compression, and dynamic‐mechanical tests were performed on composites to study the relationship of the filler content and particle size with the composite final properties. Moreover, the influence of the moisture content on the physical and mechanical properties of the different composites was analyzed. Results indicated that the mechanical properties were severely affected by the absorbed moisture. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3074–3082, 2004  相似文献   

20.
Reinforced thermoplastics generally are produced by incorporation of reinforcement agents or fillers into thermoplastic resins. The utilization of lignocellulosic material as filler with reinforcement in polymer matrix has received much interest due to its lower price and other properties. A composite of polystyrene reinforced with oil palm empty fruit bunches (EFB) and chemically treated EFB with benzoyl chloride (EFB-benzoylated) as a function of loading and fiber surface modification were prepared. The chemically treated fibers were analyzed with FT-IR to observe the extent of chemical reaction with EFB fiber. The sharp peak at 710 cm?1 appeared on the spectra, which indicated that the mono-substituted benzene ring has taken place. The strong peak at 1720 cm?1 has indicated the presence of ester group treated fiber. The flexural test was performed using Instron 4301 testing machine to study flexural properties of the composites with various fiber sizes. The results showed that the flexural properties increased with particle size. The flexural strength of EFB-benzoylated composites was observed to be stronger than untreated EFB fiber. Scanning electron microscope was used to investigate the morphological structure of the fiber surface, fiber pull out, fracture surface, and fiber–matrix interface. The untreated EFB composites showed hole and fiber end, which indicated that most of the fiber have pulled out breaking during the fracture of composites; however, the treated EFB-benzoylated showed a good adhesion between fiber and matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号