首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
以某台1 000MW超超临界塔式锅炉作为研究对象,采用区域法建立了二维小区换热模型,简化了炉内辐射换热与对流换热,对不同锅炉负荷下对流换热量占炉膛高度方向各分区换热量、炉膛总换热量的比例以及沿炉膛宽度方向水冷壁壁温的分布进行了研究,并与实测数据进行了比较.结果表明:水冷壁壁温计算值与试验值的最大偏差率为5.26%,均呈现中间高、两端低的分布趋势;对流换热量最多可使壁温计算值提高16.7K,计算精度提高3.30%;计算所得的水冷壁壁温最高值为523.5℃,未超出材料的允许温度,且有4.8%的安全裕度.  相似文献   

2.
本文以建立的简易计算模拟模型为基础,基于模拟结果,研究分析夜间建筑构件制冷的效果。在计算模型中以毛细管网为例作为温湿独立控制的空调末端,考虑了建筑构件的热传导、房间各表面及与室内空气的对流换热、各表面的辐射换热、太阳辐射、室内人员设备散热等因素,并对模型做了相应的简化。  相似文献   

3.
通过将平均辐射温度引入到建筑热舒适性传热计算中的方法简化建筑热舒适性和能耗的相互关系及其计算公式 ,进行平均辐射温度和房间的有效温度分布情况对热舒适性的影响分析。用这种方法来比较在不同热辐射换热和对流换热工况下变墙面温度时建筑内的热舒适性。理论分析和辐射、对流换热及其结合工况的热舒适性测试数据结果分析表明 ,热舒适性可以用平均辐射温度和有效温度来表征。用平均辐射温度和有效温度分析计算热建筑舒适性的方法 ,在优化建筑热系统的设计时 ,也有非常重要的参考价值。  相似文献   

4.
考虑近炉对流蒸发管内的水—汽两相流动,依据传热学原理,计算管内工质在不同温度不同流速下的对流换热系数。进一步考虑管外高温烟气的辐射对流换热、管外火焰的辐射换热和管内水—汽两相流的对流换热,采用有限元方法计算近炉对流蒸发管在紧急启动下的瞬态温度场;与实际温度场对比,吻合良好。提出的考虑水—汽两相流动确定对流换热系数的方法及温度场分析结果有一定参考价值。  相似文献   

5.
本文对Morel的汽油机缸内对流换热模型进行了改进,把一维模型应用于燃烧过程的计算,可以体现汽油机燃烧时缸内温度、组分浓度和湍流的空间变化对对流换热的影响,得到燃烧时对流换热量随时间的变化和在缸内的径向分布情况.计算实例表明,面积平均的对流换热系数远大于Woschni公式得到的计算值,缸内热流量的变化与火焰面的位置有密切关系.应用本文的数值模拟方法,还可以预测发动机的几个参数改变时,对流换热量的相应变化情况.  相似文献   

6.
在Modelica语言和Dymola软件平台的基础上,建立塔式太阳能热发电系统中碳化硅泡沫陶瓷空气吸热器的一维非稳态仿真模型。仿真模型中采用体积对流换热系数和Rosseland辐射传递方程描述对流换热和辐射传热过程,空气热物性参数随温度和压力变化。该模型的仿真结果正确性得到空气吸热器实验平台的实测验证,可用于以碳化硅泡沫陶瓷为吸热体的空气吸热器动态特性预测。  相似文献   

7.
王德敬  马凌  陈惠民 《太阳能学报》2019,40(10):2701-2707
提出一种带散热修正的地埋管储热的TRNSYS瞬态计算模型,考虑管道散热及地表空气对流散热损失;在山东省滨州市进行实地热响应测试,通过对实验测试井供回水温度的模拟,验证模型准确性。同时,模拟分析循环流量、加热功率等关键参数对岩土导热系数、钻孔热阻、延米换热量辨识精度的影响。研究结果表明,测试持续时间对岩土导热系数辨识精度影响高达24.88%,其次分别是加热功率、初始舍弃时间、循环流量、回填材料导热系数。加热功率对延米换热量影响最高达75.01%。  相似文献   

8.
为研究综合管廊热力舱中热力管线散热情况,首先基于传热学和管沟敷设研究确定管线热损的理论计算流程,其次通过Fluent建立热传导-辐射-对流耦合换热模型进行模拟,进一步分析覆土深度、土壤热导率、大气温度对管线热损失的影响。通过理论与模拟结果对比,表明两者得到的管线总热损平均误差在3%内,数值模型能够反映实际管线散热过程。同时,指出土壤热阻经验式的适用性以及多舱结构对管线散热的影响有进一步探讨的必要。  相似文献   

9.
利用计算流体力学(CFD)对顺序排列多孔介质小球的三维填充床进行数值模拟。研究填充床内位置及空气流速变化对温度分布、努塞尔数影响,并对多孔介质小球的热回流特性进行分析,揭示填充床内传热机理。结果表明:相比于气-固两相交替存在处,与小球相切处的热的非平衡性更强。最高温度上游的换热强度与下游相比更强烈;当流速增加时,上游的对流换热作用增强,下游变化不大。在热回流过程中,在入口区域对流换热占主导地位,导热和辐射换热作用较弱;在主流场区域,导热占主导地位,其次是辐射换热,对流换热作用最弱。  相似文献   

10.
对插入管内的三维波纹板、Z型带在高温低速换热条件下的强化换热进行了实验研究。除研究对流换热外,还尝试建立一种假想计算模型,将插入物对管壁的辐射换热量从总换热量中分离出来。计算得出:当气流平均温度为550K,R_e为2100时,辐射热占总热交换量的22%。补充和完善了通常的对流换热准则方程,并设计了三维波纹板。  相似文献   

11.
Fins are extended surfaces that are designed to dissipate heat from hot sources to their surroundings. The different profiles of fins are used on the equipment surface to improve heat transfer. Fins are extensively used in refrigeration, solar panels, superheaters, electric equipment, automobile parts, combustion engines, and electrical equipment. On the basis of these applications, we study the thermal performances of magnetized convective–radiative-rectangular fins with magnetized trapezoidal fins with internal heat generation. The shooting technique is used to numerically study the suggested model. It is revealed that magnetized trapezoidal fins transfer more heat than magnetized rectangular fins. It is also revealed that magnetized trapezoidal fins have higher thermal transfer competence than magnetized rectangular fins. When thermal conductivity, radiation–conduction number, and convection–conduction number increase, the fin's efficiency increases. In addition, a Hartmann number indicating the magnetic effect is found to improve heat transfer from the fins. Increasing the magnetism parameter from 0.1 to 0.3 reduced temperature by approximately 4.5%, changing internal heat generation from 0.1 to 0.5 increased temperature distribution by approximately 16%, and changing the Peclet number from 0.1 to 0.3 increased temperature distribution by approximately 15%. The effect of heat transfer coefficient, thermal radiation–conduction and convection–conduction, and dimensionless radiation are also investigated on the performance of the fins.  相似文献   

12.
建立平流层飞艇在平飞过程中的热力学综合模型,详细分析太阳辐射、地面反射、红外辐射、对流换热及热传导对内部气体温度变化的影响。分析结论表明飞艇内部气体的昼夜温差较大是影响长期驻空平流层飞艇性能的关键因素。为此,提出将相变材料应用于平流层飞艇,分析相变传热问题的特点,建立相变传热的数学模型,对相变传热问题的求解方法进行分析和比较,并设计实施地面和高空试验,试验结果与分析结果基本一致,即将相变材料应用于平流层飞艇能有效降低飞艇内部气体的日间最高温度,此研究结果可为改善平流层飞艇昼夜温差提供新思路。  相似文献   

13.
Murali Yamala 《传热工程》2017,38(10):948-962
This paper documents certain salient results of the simulation studies performed on conjugate mixed convection with surface radiation from a vertical electronic board equipped with multiple nonidentical flush-mounted discrete heat sources. Air that is assumed to be radiatively transparent with constant thermophysical properties subjected to the Boussinesq approximation is considered to be the cooling agent. The governing fluid flow and heat transfer equations without the boundary-layer approximations are initially transformed into vorticity-stream function form and are later appropriately normalized. The resulting equations, along with pertinent boundary conditions, are subsequently solved using a finite-volume-based finite-difference method coupled with Gauss–Seidel iterative technique. An extended computational domain has been used to capture the fluid flow and heat transfer adequately employing optimum combination of finer and coarser grids. A computer code is specifically written for the job. Effects of modified Richardson number, surface emissivity, and thermal conductivity on local temperature distribution, peak board temperature, and contributions of mixed convection and radiation in heat dissipation have been clearly elucidated. Two correlations that help in calculation of maximum and average nondimensional plate temperatures have also been developed.  相似文献   

14.
A hybrid numerical technique which combines the differential transformation and finite difference method is utilized to investigate the annular fin with temperature-dependent thermal conductivity. The exposed surfaces of the fin dissipate heat to the surroundings by convection and radiation. The influences of the convective heat transfer coefficient, absorptivity, emissivity and thermal conductivity parameter on the temperature distribution are examined. The results show that the convective heat transfer plays a dominant role for heat dissipation under the convection–radiation condition. The optimum radii ratio of fin which maximizes the heat transfer rate and fin efficiency is also discussed.  相似文献   

15.
This article presents the results of a comprehensive fundamental numerical study of the problem of buoyancy-aided mixed convection with conduction and surface radiation from a vertical electronic board provided with a traversable, flush-mounted, discrete heat source. Air, a radiatively transparent medium, is considered to be the cooling agent. The governing equations in primitive variables for fluid flow and heat transfer are first converted into stream function–vorticity form, and are later converted into algebraic form using the finite-volume method. The resulting finite-difference equations are solved by Gauss-Seidel iterative technique. The governing equation for temperature distribution along the electronic board is obtained by appropriate energy balance. The effects of pertinent parameters, viz., location of the discrete heat source, surface emissivity of the board, and modifiedRichardson number, on various results, including local temperature distribution along the board, maximum board temperature, and contributions of convection and surface radiation to heat dissipation from the board, are studied in great detail. The fact that any design calculation that ignores surface radiation in problems of this kind would be error-prone is clearly highlighted.  相似文献   

16.
ABSTRACT

The results of a numerical study of the problem of multimode heat transfer from a square-shaped electronic device provided with three identical flush-mounted discrete heat sources are presented here. Air, a radiatively nonparticipating fluid, is taken to be the cooling medium. The heat generated in the discrete heat sources is first conducted through the device, before ultimately being dissipated by convection and surface radiation. The governing partial differential equations for temperature distribution are converted into algebraic form using a finite-volume based finite difference method, and the resulting algebraic equations are subsequently solved using Gauss-Seidel iterative procedure. A grid size of 151 × 91 is used for discretizing the computational domain. The effects of all relevant parameters, including volumetric heat generation, thermal conductivity, convection heat transfer coefficient, and surface emissivity, on various important results, such as the local temperature distribution, the peak temperature of the device, and the relative contributions of convection and surface radiation to heat dissipation from the device, are studied in sufficient detail. The exclusive effect of surface radiation on pertinent results of the present problem is also brought out.  相似文献   

17.
Converting solar energy efficiently into hydrogen is a promising way for renewable fuels technology. However, high-temperature heat transfer enhancement of solar thermochemical process is still a pertinent challenge for solar energy conversion into fuels. In this paper, high-temperature heat transfer enhancement accounting for radiation, conduction, and convection heat transfer in porous-medium reactor filled with application in hydrogen generation has been investigated. NiFe-Aluminate porous media is synthesized and used as solar radiant absorber and redox material. Experiments combined with numerical models are performed for analyzing thermal characteristics and chemical changes in solar receiver. The reacting medium is most heated by radiation heat transfer and higher temperature distribution is observed in the region exposed to high radiation heat flux. Heat distribution, O2 and H2 yield in the reacting medium are facilitated by convective reactive gas moving through the medium's pores. The temperature gradient caused by thermal transition at fluid-solid interface could be more decreased as much as the reaction chamber can store the transferred high-temperature heat flux. However, thermal losses due to radiation flux lost at the quartz glass are obviously inevitable.  相似文献   

18.
《Journal of power sources》2005,140(1):111-124
A detailed three-dimensional thermal model has been developed to examine the thermal behaviour of a lithium-ion battery. This model precisely considers the layered-structure of the cell stacks, the case of a battery pack, and the gap between both elements to achieve a comprehensive analysis. Both location-dependent convection and radiation are adopted at boundaries to reflect different heat dissipation performances on all surfaces. Furthermore, a simplified thermal model is proposed according to the examination of various simplification strategies and validation from the detailed thermal model. Based on the examination, the calculation speed of the simplified model is comparable with that of a one-dimensional model with a maximum error less than 0.54 K. These models successfully describe asymmetric temperature distribution inside a battery, and they predict an anomaly of temperature distribution on the surface if a metal case is used. Based on the simulation results from the detailed thermal model, radiation could contribute 43–63% at most to the overall heat dissipation under natural convection. Forced convection is effective in depressing the maximum temperature, and the temperature uniformity does not necessarily decrease infinitely when the extent of forced convection is enhanced. The metal battery case serves as a heat spreader, and the contact layer provides extra thermal resistance and heat capacity for the system. These factors are important and should be considered seriously in the design of battery systems.  相似文献   

19.
Increasing the power density and heat dissipation in electronic equipment and their need for an efficient thermal management system have made the liquid cooling techniques inevitable in recent years. In most applications, liquid cooling systems work in conjunction with more traditional cooling methods, such as conduction and convection heat transfer, using air cooling systems. In this study, the performance of Reciprocating Mechanism‐Driven Heat Loop (RMDHL) for electronic and power electronic cooling applications has been studied and compared with that of a conventional Dynamic Pump‐Driven Heat Loop (DPDHL). A numerical model using moving boundaries in Ansys Fluent commercial code has been developed to generate the reciprocating motion of working fluid with desired frequency and amplitude. The temperature distribution contours and Nusselt numbers show the superior performance of the RMDHL system in terms of heat transfer and temperature uniformity of the heated surface. The results show that, for the same average mass flow rate in the cooling loops the average surface temperature in the RMDHL loop is considerably lower than that of DPDHL especially at higher reciprocating frequency. The results also indicate that similar to the effect of the oscillatory frequency, increasing the amplitude also increases the heat transfer rate in the RMDHL loop. In addition, the Nusselt number shows a linear increment with the increase of both oscillatory amplitude and frequency. Uniform temperature distribution and efficiency of thermal management systems based on RMDHL loop could decrease the resultant thermal stress in electronic devices and increase the reliability of them.  相似文献   

20.
In this study, a mathematical analysis is presented on the complete interface problem between solar concentration systems and high temperature thermochemical processes. This includes the thermal process starting from the incoming solar radiation up to the heat transfer to a heat carrier fluid or reactants in a given reactor. The system considered comprises a heliostat, a parabolic concentrator and a receiver. The hourly incoming radiation, the hourly reflection and absorption losses on the heliostat and concentrator systems, the radiation flux density distribution in the receiver space, the solar and IR bands radiation exchange and the useful heat transfer are all considered in the analysis. The parameters such as temperature distribution in the receiver as well as thermal efficiency can be calculated for a given case. The model has been verified using the experimental results obtained in two different systems. In addition, a parametric study has been carried out on the global receiver efficiency with respect to temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号