首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
分析句子针对不同方面的情感极性,深入挖掘评论文本中的信息,为企业生产决策提供建议。针对传统方法多考虑单一层面注意力信息,且基于RNN的模型忽略了局部特征的重要性,而基于CNN的模型不能捕捉长距离依赖的信息的问题,提出了基于双重注意力机制的BG-DATT-CNN模型。在特征表示上,利用BERT对句子和方面词分别进行词向量编码,获得文本的深层语义特征。在特征提取上,设计了双重注意力机制,通过计算两类权重获得综合权重,强化文本的上下文相关特征和方面相关特征。在模型构建上,设计了BG-DATT-CNN网络,结合GRU和CNN各自的优势,Bi-GRU层捕捉文本的上下文全局特征,CNN层包括[K]-Max池化层和TextCNN层,通过两阶段特征提取获取分类的关键信息。在SemEval 2014数据集上的实验表明,与现有的其他模型相比,提出的模型取得了较好的效果。  相似文献   

2.
基于CNN和LSTM的多通道注意力机制文本分类模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统的卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于CNN和LSTM的多通道注意力机制文本分类模型。使用CNN和LSTM提取文本局部信息和上下文特征;用多通道注意力机制(Attention)提取CNN和LSTM输出信息的注意力分值;将多通道注意力机制的输出信息进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上。在三个公开数据集上的实验结果表明,提出的模型相较于CNN、LSTM及其改进模型效果更好,可以有效提高文本分类的效果。  相似文献   

3.
在对中文文本进行分类的过程中,由于关键特征在整个文本中具有分布不均匀的特点,容易出现关键特征丢失的问题,降低了分类的准确性。针对这一问题,提出一种基于注意力机制的双通道文本分类模型。将输入文本通过词嵌入进行向量表示,利用Bi-LSTM通道提取文本中的上下文关联信息,利用CNN通道提取文本中连续词间的局部特征。在两个通道中均引入注意力机制进行全局权重分配,使模型能够进一步关注到文本中的关键词。在CNN通道中,将原始输入向量与各层CNN的输出向量进行选择性融合,从而实现特征重利用。在今日头条和THUCNews两个公开数据集上进行性能评估,实验结果表明,与其他分类模型相比,所提模型的分类准确率分别为97.59%、90.09%,具有更好的分类性能。  相似文献   

4.
针对双向门控循环神经网络(BiGRU)无法获取文本局部特征,卷积神经网络(CNN)无法聚焦文本全局特征的问题,提出一种字词融合的双通道混合神经网络文本情感分析模型(CW_BGCA).首先,将文本分别用字符级词向量和词语级词向量表示;然后使用门控循环神经网络和卷积神经网络结合的混合神经模型分别从字向量和词向量中提取隐层特征,并分别引入注意力机制进行特征权重分配;最后将双通道网络提取的特征融合,输入到Softmax函数进行分类.在数据集上进行了多组实验验证,该方法取得了93.15%的F1值、93.47%的准确率,优于其他对照模型.试验结果表明,该模型能够有效的提高文本情感分析的性能.  相似文献   

5.
传统词嵌入通常将词项的不同上下文编码至同一参数空间,造成词向量未能有效辨别多义词的语义;CNN网络极易关注文本局部特征而忽略文本时序语义,BiGRU网络善于学习文本时序整体语义,造成关键局部特征提取不足.针对上述问题,提出一种基于词性特征的CNN_BiGRU文本分类模型.引入词性特征构建具有词性属性的词性向量;将词性向量与词向量交叉组合形成增强词向量,以改善文本表示;采用CNN网络获取增强词向量的局部表示,利用BiGRU网络捕获增强词向量的全局上下文表示;融合两模型学习的表示形成深度语义特征;将该深度语义特征连接至Softmax分类器完成分类预测.实验结果表明,该模型提高了分类准确率,具有良好的文本语义建模和识别能力.  相似文献   

6.
针对传统卷积神经网络(CNN)缺乏句子体系特征的表示,以及传统双向门限循环神经网络(BiGRU)缺乏提取深层次特征能力。以中文文本为研究对象,在字符级词向量的基础上提出双通道的CNN-BiGRU复合网络,同时引入注意力机制的模型进行情感分析。首先,在单通道上利用CNN提取深层次短语特征,利用BiGRU提取全局特征的能力深度学习短语体系特征,从而得到句子体系的特征表示;再通过增加注意力层进行有效特征筛选;最后,采用双通道结构的复合网络,丰富了特征信息,加强了模型的特征学习能力。在数据集上进行多组对比实验,该方法取得92.73%的◢F◣1值结果优于对照组,说明了提出的模型能有效地提高文本分类的准确率。同时在单句测试上量化出模型优势,且实现了模型的实际应用能力。  相似文献   

7.
文本情感分类通过对带有情感色彩的主观性文本进行分析和推理,帮助用户更好地做出判断与决策。针对传统情感分类模型难以根据上下文信息调整词向量的问题,提出一种双通道文本情感分类模型。利用ELMo和Glove预训练模型分别生成动态和静态词向量,通过堆叠嵌入2种词向量生成输入向量。采用自注意力机制处理输入向量,计算内部的词依赖关系。构建融合卷积神经网络(CNN)和双向门控递归单元(BiGRU)的双通道神经网络结构,同时获取文本局部特征和全局特征。最终将双通道处理结果进行拼接,经过全连接层处理后输入分类器获得文本情感分类结果。实验结果表明,与同类情感分类模型中性能较优的H-BiGRU模型相比,ELMo-CNN-BiGRU模型在IMDB、yelp和sentiment140数据集上的准确率和F1值分别提升了2.42、1.98、2.52和2.40、1.94、2.43个百分点,具有更好的短文本情感分类效果和稳定性。  相似文献   

8.
张小川  戴旭尧  刘璐  冯天硕 《计算机应用》2020,40(12):3485-3489
针对中文短文本缺乏上下文信息导致的语义模糊从而存在的特征稀疏问题,提出了一种融合卷积神经网络和多头自注意力机制(CNN-MHA)的文本分类模型。首先,借助现有的基于Transformer的双向编码器表示(BERT)预训练语言模型以字符级向量形式来格式化表示句子层面的短文本;然后,为降低噪声,采用多头自注意力机制(MHA)学习文本序列内部的词依赖关系并生成带有全局语义信息的隐藏层向量,再将隐藏层向量输入到卷积神经网络(CNN)中,从而生成文本分类特征向量;最后,为提升分类的优化效果,将卷积层的输出与BERT模型提取的句特征进行特征融合后输入到分类器里进行再分类。将CNN-MHA模型分别与TextCNN、BERT、TextRCNN模型进行对比,实验结果表明,改进模型在搜狐新闻数据集上的F1值表现和对比模型相比分别提高了3.99%、0.76%和2.89%,验证了改进模型的有效性。  相似文献   

9.
张小川  戴旭尧  刘璐  冯天硕 《计算机应用》2005,40(12):3485-3489
针对中文短文本缺乏上下文信息导致的语义模糊从而存在的特征稀疏问题,提出了一种融合卷积神经网络和多头自注意力机制(CNN-MHA)的文本分类模型。首先,借助现有的基于Transformer的双向编码器表示(BERT)预训练语言模型以字符级向量形式来格式化表示句子层面的短文本;然后,为降低噪声,采用多头自注意力机制(MHA)学习文本序列内部的词依赖关系并生成带有全局语义信息的隐藏层向量,再将隐藏层向量输入到卷积神经网络(CNN)中,从而生成文本分类特征向量;最后,为提升分类的优化效果,将卷积层的输出与BERT模型提取的句特征进行特征融合后输入到分类器里进行再分类。将CNN-MHA模型分别与TextCNN、BERT、TextRCNN模型进行对比,实验结果表明,改进模型在搜狐新闻数据集上的F1值表现和对比模型相比分别提高了3.99%、0.76%和2.89%,验证了改进模型的有效性。  相似文献   

10.
针对目前网络评论文本情感分类准确性不高的问题,提出一种基于BERT和双向门控循环单元(BiGRU)的改进模型,使用能够表征文本丰富语义特征的BERT模型进行词向量表示,结合能够长期保留文本上下文关联信息的BiGRU神经网络提高模型的分类效果,并在此基础上引入注意力机制,突出文本中更能表达分类结果的情感词权重,提高情感分类的准确率。将上述模型分别在Acllmdb_v1和酒店评论两个公开数据集上进行测试,实验结果表明,该模型在中、英文文本情感分类任务中都获得了良好的性能。  相似文献   

11.
现有基于深度学习和神经网络的文本情感分析模型通常存在文本特征提取不全面,且未考虑关键信息对文本情感倾向的影响等问题。基于并行混合网络与双路注意力机制,提出一种改进的文本情感分析模型。根据不同神经网络的特点分别采用GloVe和Word2vec两种词向量训练工具将文本向量化,得到更丰富的文本信息。将两种不同的词向量并行输入由双向门控循环单元与卷积神经网络构建的并行混合网络,同时提取上下文全局特征与局部特征,提高模型的特征提取能力。使用双路注意力机制分别对全局特征和局部特征中的关键信息进行加强处理及特征融合,增强模型识别关键信息的能力。将融合后的整个文本特征输入全连接层,实现最终的情感极性分类。在IMDb和SST-2公开数据集上的实验结果表明,该模型的分类准确率分别达到91.73%和91.16%,相比于同类文本情感分析模型有不同程度的提升,从而证明了双路注意力机制可以更全面地捕获文本中的关键信息,提高文本情感分类效果。  相似文献   

12.
王丽亚  刘昌辉  蔡敦波  卢涛 《计算机应用》2019,39(10):2841-2846
传统卷积神经网络(CNN)中同层神经元之间信息不能互传,无法充分利用同一层次上的特征信息,缺乏句子体系特征的表示,从而限制了模型的特征学习能力,影响文本分类效果。针对这个问题,提出基于CNN-BiGRU联合网络引入注意力机制的模型,采用CNN-BiGRU联合网络进行特征学习。首先利用CNN提取深层次短语特征,然后利用双向门限循环神经网络(BiGRU)进行序列化信息学习以得到句子体系的特征和加强CNN池化层特征的联系,最后通过增加注意力机制对隐藏状态加权计算以完成有效特征筛选。在数据集上进行的多组对比实验结果表明,该方法取得了91.93%的F1值,有效地提高了文本分类的准确率,时间代价小,具有很好的应用能力。  相似文献   

13.
文本校对是自然语言处理领域的重要分支。深度学习技术因强大的特征提取与学习能力被广泛应用于中文文本校对任务。针对现有中文文本错误检测模型忽略句子连续词间的局部信息、对于长文本的上下文语义信息提取不充分等问题,提出一种基于多通道卷积神经网络(CNN)与双向门控循环单元(BiGRU)的字词级文本错误检测模型。利用Word2vec向量化待检错文本,采用CNN挖掘待检错文本的局部特征,使用BiGRU学习待检错文本的上下文语义信息及长时依赖关系,并通过Softmax处理后输出文本分类结果以判断文本中是否含有字词错误,同时采取L2正则化和dropout策略防止模型过拟合。在SIGHAN2014和SIGHAN2015中文拼写检查任务数据集上的实验结果表明,与基于长短时记忆网络的文本错误检测模型相比,该模型的检错F1值提升了3.01个百分点,具有更优的字词级文本错误检测效果。  相似文献   

14.
为更好解决卷积神经网络提取特征不充分,难以处理长文本结构信息和捕获句子语义关系等问题,提出一种融合CNN和自注意力BiLSTM的并行神经网络模型TC-ABlstm.对传统的卷积神经网络进行改进,增强对文本局部特征的提取能力;设计结合注意力机制的双向长短期记忆神经网络模型来捕获文本上下文相关的全局特征;结合两个模型提取文...  相似文献   

15.
针对传统的卷积神经网络(CNN)在进行情感分析任务时会忽略词的上下文语义以及CNN在最大池化操作时会丢失大量特征信息,从而限制模型的文本分类性能这两大问题,提出一种并行混合神经网络模型CA-BGA。首先,采用特征融合的方法在CNN的输出端融入双向门限循环单元(BiGRU)神经网络,通过融合句子的全局语义特征加强语义学习;然后,在CNN的卷积层和池化层之间以及BiGRU的输出端引入注意力机制,从而在保留较多特征信息的同时,降低噪声干扰;最后,基于以上两种改进策略构造出了并行混合神经网络模型。实验结果表明,提出的混合神经网络模型具有收敛速度快的特性,并且有效地提升了文本分类的F1值,在中文评论短文本情感分析任务上具有优良的性能。  相似文献   

16.
基于多头自注意力机制的Transformer作为主流特征提取器在多种自然语言处理任务中取得了优异表现,但应用于命名实体识别任务时存在一字多词、增加额外存储与词典匹配时间等问题。提出一种CNN-Head Transformer编码器(CHTE)模型,在未使用外部词典和分词工具的基础上,通过自注意力机制捕获全局语义信息,利用不同窗口大小的CNN获取Transformer中6个注意力头的Value向量,使CHTE模型在保留全局语义信息的同时增强局部特征和潜在词信息表示,并且应用自适应的门控残差连接融合当前层和子层特征,提升了Transformer在命名实体识别领域的性能表现。在Weibo和Resume数据集上的实验结果表明,CHTE模型的F1值相比于融合词典信息的Lattice LSTM和FLAT模型分别提升了3.77、2.24和1.30、0.31个百分点,具有更高的中文命名实体识别准确性。  相似文献   

17.
双向长短期记忆网络(BiLSTM)和卷积神经网络(CNN)很难在文本的多分类任务中提取到足够的文本信息。提出了一种基于自注意力机制(self_attention)和残差网络(ResNet)的BiLSTM_CNN复合模型。通过自注意力赋予卷积运算后信息的权重,接着将池化后的特征信息层归一化并接入残差网络,让模型学习到残差信息,从而进一步提高模型的分类性能。在模型的运算过程中,使用了更加光滑的Mish非线性激活函数代替Relu。通过与深度学习模型对比,所提出的方法在准确率以及F1值评价指标上均优于现有模型,为文本分类问题提供了新的研究思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号