首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A plasma electron accelerator based on the gyromagnetic autoresonance effect is described. Electrons of the initially cold internal-injection plasma (a classical ECR discharge) are accelerated in the magnetic field of a magnetic mirror trap under a one-stage effect of the resonant microwave field and an additional pulsed magnetic field. The synchronism in maintaining the resonance conditions is ensured by a smooth increase in the pulsed magnetic field in the course of a microwave pulse. At the moderate values of the input microwave power (up to 2.5 kW) and the steady-state and pulsed magnetic fields (each up to 1 kG), it is possible to obtain stable relativistic plasma bunches, in which the energy of the electron components is a few hundred keV. The measured X-ray bremsstrahlung spectra have features characteristic of the energy distribution of photons, and the high-energy tails are recorded in the region of 600–800 keV. The dependences of the bremsstrahlung characteristics on the experimental conditions—the value of the steady-state magnetic field and the amplitude of the pulsed magnetic field—are investigated. The experimental data are in good agreement in the quantitative sense with the results of the computer simulation and with the earlier studies.  相似文献   

3.
Electron cyclotron resonance (ECR) plasma source at 50 keV, 30 mA proton current has been designed, fabricated, and assembled. Its plasma study has been done. Plasma chamber was excited with 350 W of microwave power at 2450 MHz, along with nitrogen and hydrogen gases. Microwave power was fed to the plasma chamber through waveguide. Plasma density and electron temperature were studied under various operating conditions, such as magnetic field, gas pressure, and transversal distance. Langmuir probe was used for plasma characterization using current-voltage variation. The nitrogen plasma density calculated was approximately 4.5 x 10(11) cm(-3), and electron temperatures of 3-10 eV (cold) and 45-85 eV (hot) were obtained. The total ion beam current of 2.5 mA was extracted, with two-electrode extraction geometry, at 15 keV beam energy. The optimization of the source is under progress to extract 30 mA proton beam current at 50 keV beam energy, using three-electrode extraction geometry. This source will be used as an injector to continuous wave radio frequency quadrupole, a part of 100 MeV proton linac. The required root-mean-square normalized beam emittance is less than 0.2pi mm mrad. This article presents the study of plasma parameters, first beam results, and status of ECR proton source.  相似文献   

4.
We describe a pulsed gas valve which we have developed for use as a molecular beam source. In order to observe the performance of the pulsed beam source, we also have developed an ionization detector with a rise time of about 1 micros. The pulsed valve produces very intense supersonic molecular beam pulses of about 10 micros duration for light gases such as H2 and He, and of somewhat longer duration for heavier gases. As a new tool for the study of molecular collisions, the pulsed beam technique offers substantial advantages over the conventional continuous-beam method for experiments which are limited by the signal-to background ratio for scattered products.  相似文献   

5.
The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.  相似文献   

6.
A ridged cylindrical cavity has been designed using MICROWAVE STUDIO programme and it is used in the electron cyclotron resonance (ECR) x-ray source. The experimental parameters of the source are optimized for maximizing the x-ray output, and an x-ray dose rate of ~1000 μSv∕h was observed at 20 cm from the port, for 500 W of microwave power without using any target. With the molybdenum target located at optimum position of the ridged cavity, the dose rate is found to be increased only by 10%. In order to understand the experimental observation, the electric field pattern of the cavity with the target placed at various radial distances is studied. In this note, the experimental and theoretical studies on ECR x-ray source using the ridged cylindrical cavity are presented.  相似文献   

7.
A new design of a multicharged ion source based on the MONO1000 ECRIS has been presented at the last ECR ion source (ECRIS) Workshop 2010. [L. Maunoury et al., in Proceedings of the XIXth International Workshop on ECR Ion Sources, Grenoble, France, 23-26 August 2010] This source has not only two opening at both ends but also a large space in the middle of the source enabling a direct contact with the ECR plasma. The source has been assembled mechanically and put on a test bench at the Pantechnik company. The primary tests have shown that the plasma ignition occurred at low pressure (10(-6) mbar) and low RF power (10 W). The first experimental results ( = 1.30 for Ar and 1.85 for Xe) demonstrated the potential of this ion source in production of multicharged ion beams.  相似文献   

8.
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.  相似文献   

9.
A unit for creating in the area of the analyzed sample a pulsed microwave field with a 2.45-GHz frequency, a 10-ns fall time, and a rotating component of the magnetic induction with a maximum amplitude of 0.8 mT is described. The fast pulse decay is obtained by creating a pulsation mode in the system consisting of two coupled resonators. The duration of the flat top of the microwave pulse is regulated from 0 to 400 ns, and the maximum pulse repetition rate is 16 kHz. The unit is used in the nanosecond X-ray fluorimeter to control the spin state of the spin-correlated ion-radical pairs in nonpolar solutions.  相似文献   

10.
The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.  相似文献   

11.
A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.  相似文献   

12.
The results of first experiments on the investigation of plasma of electron cyclotron resonance (ECR) discharge, sustained by CW radiation of technological gyrotron with frequency 24 GHz are considered. The parameters of nitrogen plasma of ECR discharge in magnetic field up to 1 T were investigated by Langmuir probe in the pressure range 10(-4)-10(-2) mbar under different values of microwave power. Depending on gas pressure and power of microwave radiation, the typical temperature and density of electrons could attain values of 1-5 eV and 10(11)-10(12) cm(-3), respectively. The prospects for using of ECR discharge for plasma chemical decomposition of silicon tetrafluoride (SiF(4)) have been experimentally demonstrated. Plasma was created from SiF(4) and hydrogen (H(2)) gas mixture and heated by microwave radiation in ECR conditions. Using the method of mass-spectrometry analysis of the gas at the outlet from the reactor and the weighting method, the content of the resultants of SiF(4) decomposition as a function of process parameters was investigated. It was shown that SiF(4) decomposition degree strongly depends on the microwave power, gas pressure in the reactor, gas flow rates, and can attain the value of 50%. The possible applications of PECVD method based on ECR discharge for production of isotopically pure elements with high deposition rate are discussed.  相似文献   

13.
A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.  相似文献   

14.
A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.  相似文献   

15.
The structure of the designed calcium plasma source for an installation for separating calcium isotopes based on the ion cyclotron resonance in plasma (ICR separation method) is described. Two variants of the source are presented: a source with a standalone calcium evaporator and a source with a solid calcium surface facing the discharge region. In both variants, an ECR discharge can be used to ionize calcium atoms (microwave discharge in a magnetic field at the electron cyclotron frequency).  相似文献   

16.
For the corpuscular plasma heating in the MST plasma device (Madison, United States), an injector of hydrogen atoms with 25-keV energy, equivalent at omic current of >45 A, and 20-ms pulse duration was designed and put into operation at the Budker Institute of Nuclear Physics (Novosibirsk, Russia) in 2009. The pulse repetition rate is 5 min. The output current of the ion source in the atomic injector exceeds 50 A. A high-voltage source with a 1.5-MW power was design ed for the high-voltage powering of the atomic injector. The run duration of the power supply with rated characteristics is >20 ms. The power supply is based on a distributed capacitive energy storage, which allows the power consumption from the industrial network to be reduced down to 10 kW at a pulsed load power of 1.5 MW. The high-voltage power supply smoothly regulates the output voltage from 0 to 30 kV and is capable of being quickly deenergized if high-voltage breakdown of the load takes place. The diagram and structural components of the high-voltage power system of the atomic injector are described, and its test results are given.  相似文献   

17.
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.  相似文献   

18.
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.  相似文献   

19.
A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.  相似文献   

20.
A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号