首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several international legislations recently banned the use of Pb because of environmental concerns. The eutectic Sn-Ag solder is one of the promising candidates to replace the conventional Sn-Pb solder primarily because of its excellent mechanical properties. In this study, interfacial reaction of the eutectic Sn-Ag and Sn-Pb solders with Ni/Cu under-bump metallization (UBM) was investigated with a joint assembly of solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. After reflows, only one (Ni,Cu)3Sn4 intermetallic compound (IMC) with faceted and particlelike grain feature was found between the solder and Ni. The thickness and grain size of the IMC increased with reflow times. Another (Cu,Ni)6Sn5 IMC with a rod-type grain formed on (Ni,Cu)3Sn4 in the interface between the Sn-Pb solder and the Ni/Cu UBM after more than three reflow times. The thickness of the (Ni,Cu)3Sn4 layer formed in the Sn-Pb system remained almost identical despite the numbers of reflow; however, the amounts of (Cu,Ni)6Sn5 IMC increased with reflow times. Correlations between the IMC morphologies, Cu diffusion behavior, and IMC transformation in these two solder systems will be investigated with respect to the microstructural evolution between the solders and the Ni/Cu UBM. The morphologies and grain-size distributions of the (Ni,Cu)3Sn4 IMC formed in the initial stage of reflow are crucial for the subsequent phase transformation of the other IMC.  相似文献   

2.
Nickel plating has been used as the under bump metallization (UBM) in the microelectronics industry. The electroplated Ni-P UBM with different phosphorous contents (7 wt.%, 10 wt.%, and 13 wt.%) was used to evaluate the interfacial reaction between Ni-P UBM and Sn-3Ag-0.5Cu solder paste during multiple reflow. (Cu,Ni)6Sn5 intermetallic compounds (IMC) formed in the SnAgCu solder/Ni-P UBM interface after the first reflow. For three times reflow, (Ni,Cu)3Sn4 IMC formed, while (Cu,Ni)6Sn5 IMC spalled into the solder matrix. With further increasing cycles of reflow, the Ni-Sn-P layer formed between (Ni,Cu)3Sn4 IMC and Ni-P UBM for Ni-10wt.%P and Ni-13wt.%P UBM. However, almost no Ni-Sn-P layer was revealed for the Ni-7wt.%P UBM even after ten cycles of reflow. In consideration of the wettability of Ni-P UBM, the interfacial reaction of SnAgCu/Ni-P, and dissolution of Ni-P UBM, the optimal phosphorous selection in Ni-P UBM was proposed and also discussed.  相似文献   

3.
This paper reports the formation of intermetallic compounds in Au/Ni/Cu/Ti under-bump-metallization (UBM) structure reacted with Ag-Sn eutectic solder. In this study, UBM is prepared by evaporating Au(500 Å)/Ni(1000 Å)/Cu(7500 Å) /Ti (700 Å) thin films on top of Si substrates. It is then reacted with Ag-Sn eutectic solder at 260 C for various times to induce different stages of the interfacial reaction. Microstructural examination of the interface, using both chemical and crystallographic analysis, indicates that two types of intermetallic compounds are formed during the interfacial reaction. The first phase, formed at the intial stage of the reaction, is predominantly Ni3Sn4. At longer times the Ni3Sn4 phase transforms into (Cu, Ni)6Sn6, probably induced by interdiffusion of Cu and Ni. At this stage, the underlying Cu layer also reacts with Sn and forms the same phase, (Cu,Ni)6Sn5. As a result, the fully reacted interface is found to consist of two intermetallic layers with the same phase but different morphologies.  相似文献   

4.
Ti/Ni(V)/Cu underbump metallization (UBM) is widely used in flip-chip technology today. The advantages of Ti/Ni(V)/Cu UBM are a low reaction rate with solder and the lack of a magnetic effect during sputtering. Sn atoms diffuse into the Ni(V) layer to form a Sn-rich phase, the so-called Sn-patch, during reflow and aging. In this study, the relationship between interfacial reaction and mechanical properties of the solder joints with Ti/Ni(V)/Cu UBM was evaluated. Sn-3.0Ag-0.5Cu solder was reflowed on sputtered Ti/Ni(V)/Cu UBM, and then the reflowed samples were aged at 125°C and 200°C, respectively. (Cu,Ni)6Sn5 was formed and grew gradually at the interface of the solder joints during aging at 125°C. The Sn-patch replaced the Ni(V) layer, and (Ni,Cu)3Sn4 was thus formed between (Cu,Ni)6Sn5 and the Sn-patch at 200°C. The Sn-patch, composed of Ni and V2Sn3 after reflow, was transformed to V2Sn3 and amorphous Sn during aging. Shear and pull tests were applied to evaluate the solder joints under various heat treatments. The shear force of the solder joints remained at 421 mN, yet the pull force decreased after aging at 125°C. Both the shear and pull forces of the solder joints decreased during aging at 200°C. The effects of aging temperature on the mechanical properties of solder joint were investigated and discussed.  相似文献   

5.
The solid-state annealing behavior of two high-lead solders, 95Pb5Sn and 90Pb10Sn (in wt.%), was examined. After reflow, Cu3Sn intermetallics formed on the Cu under bump metallurgy (UBM) for both solder alloys. However, solidstate annealing produced significantly different reaction morphologies for the two solder compositions. The Cu3Sn intermetallics spalled off faster at higher temperatures in the 95Pb5Sn solder. In the case of 90Pb10Sn solder, the Cu3Sn intermetallics continued to grow even after 1500 h at 170°C. The difference was explained by a two-step phenomenon—Sn diffusion from the bulk solder region to the solder/Cu3Sn interface (JSn), and subsequent intermetallic formation (ICu3Sn) by interdiffusion of Cu and Sn. For 95Pb5Sn, the relation, JSn < ICu3Sn was postulated because of insufficient supply of Sn. The relation, JSn > ICu3Sn was suggested for the continuous intermetallic growth of the 90Pb10Sn solder. Although a small difference was expected between the two quantities in both solder alloys, the difference in the solid-state annealing behavior was dramatic.  相似文献   

6.
This study was focused on the formation and reliability evaluation of solder joints with different diameters and pitches for flip chip applications. We investigated the interfacial reaction and shear strength between two different solders (Sn-37Pb and Sn-3.0Ag-0.5Cu, in wt.%) and ENIG (Electroless Nickel Immersion Gold) UBM (Under Bump Metallurgy) during multiple reflow. Firstly, we formed the flip chip solder bumps on the Ti/Cu/ENIG metallized Si wafer using a stencil printing method. After reflow, the average solder bump diameters were about 130, 160 and 190 μm, respectively. After multiple reflows, Ni3Sn4 intermetallic compound (IMC) layer formed at the Sn-37Pb solder/ENIG UBM interface. On the other hand, in the case of Sn-3.0Ag-0.5Cu solder, (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMCs were formed at the interface. The shear force of the Pb-free Sn-3.0Ag-0.5Cu flip chip solder bump was higher than that of the conventional Sn-37Pb flip chip solder bump.  相似文献   

7.
Using the screen-printed solder-bumping technique on the electroless plated Ni-P under-bump metallurgy (UBM) is potentially a good method because of cost effectiveness. As SnAgCu Pb-free solders become popular, demands for understanding of interfacial reactions between electroless Ni-P UBMs and Cu-containing Pb-free solder bumps are increasing. It was found that typical Ni-Sn reactions between the electroless Ni-P UBM and Sn-based solders were substantially changed by adding small amounts of Cu in Sn-based Pb-free solder alloys. In Cu-containing solder bumps, the (Cu,Ni)6Sn5 phase formed during initial reflow, followed by (Ni,Cu)3Sn4 phase formation during further reflow and aging. The Sn3.5Ag solder bumps showed a much faster electroless Ni-P UBM consumption rate than Cu-containing solder bumps: Sn4.0Ag0.5Cu and Sn0.7Cu. The initial formation of the (Cu,Ni)6Sn5 phase in SnAgCu and SnCu solders significantly reduced the consumption of the Ni-P UBM. The more Cu-containing solder showed slower consumption rate of the Ni-P UBM than the less Cu-containing solder below 300°C heat treatments. The growth rate of the (Cu,Ni)6Sn5 intermetallic compound (IMC) should be determined by substitution of Ni atoms into the Cu sublattice in the solid (Cu,Ni)6Sn5 IMC. The Cu contents in solder alloys only affected the total amount of the (Cu,Ni)6Sn5 IMC. More Cu-containing solders were recommended to reduce consumption of the Ni-based UBM. In addition, bump shear strength and failure analysis were performed using bump shear test.  相似文献   

8.
The effects of various elements of substrate metallization, namely, Au, Ni, and P, on the solder/under-bump metallization (UBM), (Al/Ni(V)/Cu) interfacial reactions in flip-chip packages during multiple reflow processes were systematically investigated. It was found that Au and P had negligible effects on the liquid-solid interfacial reactions. However, Ni in the substrate metallization greatly accelerated the interfacial reactions at chip side and degraded the thermal stability of the UBM through formation of a (Cu,Ni)6Sn5 ternary compound at the solder/UBM interface. This phenomenon can be explained in terms of enhanced grain-boundary grooving on (Cu,Ni)6Sn5 in the molten solder during the reflow process. This could eventually cause the rapid spalling of an intermetallic compound (IMC) from the solder/UBM interface and early failure of the packages. Our results showed that formation of multicomponent intermetallics, such as (Cu,Ni)6Sn5 or (Ni,Cu)3Sn4, at the solder/UBM interface is detrimental to the solder-joint reliability.  相似文献   

9.
This study investigates the interfacial reactions between electroless Ni-Cu-P deposit and 63Sn-37Pb solder bumps under various reflow conditions. The morphology of the intermetallic compounds formed at the Ni-Cu-P/Sn-Pb interface changes with respect to reflow cycle, reflow temperature, and reflow time. The (Ni,Cu)3Sn4 compounds with three different morphologies of fine grain, whisker, and polygonal grain form at the Ni-Cu-P/Sn-Pb interface after reflow at 220°C for 15 s. The whisker-shape and polygonal grains detach from the Ni-Cu-P deposit into the Sn-Pb solder during multiple reflows. The (Ni,Cu)3Sn4 compound grows rapidly when the reflow temperature is above the Ni-Sn eutectic temperature, 231°C. A continuous (Ni,Cu)3Sn4 layer forms after reflow at 220°C for 10 min. A 4.5 μm Ni-Cu-P deposit prevents the interdiffusion of Sn and Al atoms across the Ni-Cu-P deposit after 10 reflow cycles at 220°C for 15 s and after reflow at 220°C for 10 min.  相似文献   

10.
The morphological and compositional evolutions of intermetallic compounds (IMCs) formed at three Pb-free solder/electroless Ni-P interface were investigated with respect to the solder compositions and reflow times. The three Pb-free solder alloys were Sn3.5Ag, Sn3.5Ag0.75Cu, and Sn3Ag6Bi2In (in wt.%). After reflow reaction, three distinctive layers, Ni3Sn4 (or Ni-Cu-Sn for Sn3.5Ag0.75Cu solder), NiSnP, and Ni3P, were formed on the electroless Ni-P layer in all the solder alloys. For the Sn3.5Ag0.75Cu solder, with increasing reflow time, the interfacial intermetallics switched from (Cu,Ni)6Sn5 to (Cu,Ni)6Sn5+(Ni,Cu)3Sn4, and then to (Ni,Cu)3Sn4 IMCs. The degree of IMC spalling for the Sn3.5Ag0.75Cu solder joint was more than that of other solders. In the cases of the Sn3.5Ag and Sn3Ag6Bi2In solder joints, the growth rate of the Ni3P layer was similar because these two type solder joints had a similar interfacial reaction. On the other hand, for the Sn3.5Ag0.75Cu solder, the thickness of the Ni3P and Ni-Sn-P layers depended on the degree of IMC spalling. Also, the shear strength showed various characteristics depending on the solder alloys and reflow times. The fractures mainly occurred at the interfaces of Ni3Sn4/Ni-Sn-P and solder/Ni3Sn4.  相似文献   

11.
Flip-chip interconnection technology plays a key role in today’s electronics packaging. Understanding the interfacial reactions between the solder and under-bump metallization (UBM) is, thus, essential. In this study, different thicknesses of electroplated Ni were used to evaluate the phase transformation between Ni/Cu under-bump metallurgy and eutectic Sn-Pb solder in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure for the flip-chip technology. Interfacial reaction products varied with reflow times. After the first reflow, layered (Ni1−x,Cux)3Sn4 was found between solder and Ni. However, there were two interfacial reaction products formed between solders and the UBM after three or more times reflow. The layered (Ni1−x,Cux)3Sn4 was next to the Ni/Cu UBM. The islandlike (Cu1−y,Niy)6Sn5 intermetallic compound (IMC) could be related to the Ni thickness and reflow times. In addition, the influence of Cu contents on phase transformation during reflow was also studied.  相似文献   

12.
High strain-rate drop impact tests were performed on ball grid array (BGA) packages with lead-free Sn-3.8Ag-0.7Cu solder (in wt.%). Plated Ni and Cu under-bump metallurgies (UBMs) were used on the device side, and their drop test performances were compared. Failure occurred at the device side, exhibiting brittle interfacial fracture. For Ni UBM, failure occurred along the Ni/(Cu,Ni)6Sn5 interface, while the Cu UBM case showed failure along the interface between two intermetallics, Cu6Sn5/Cu3Sn. However, the damage across the package varied. For Cu UBM, only a few solder balls failed at the device edge, whereas on Ni UBM, many more solder bumps failed. The difference in the failure behavior is due to the adhesion of the UBM and intermetallics rather than the intermetallic thickness. The better adhesion of Cu UBM is due to a more active soldering reaction than Ni, leading to stronger chemical bonding between intermetallics and UBM. In our reflow condition, the soldering reaction rate was about 4 times faster on Cu UBM than on Ni UBM.  相似文献   

13.
Cross-interactions between Cu/Sn/Pd and Ni/Sn/Pd sandwich structures were investigated in this work. For the Cu/Sn/Pd case, the growth behavior and morphology of the interfacial (Pd,Cu)Sn4 compound layer was very similar to that of the single Pd/Sn interfacial reaction. This indicates that the growth of the (Pd,Cu)Sn4 layer at the Sn/Pd interface would not be affected by the opposite Cu/Sn interfacial reaction. We can conclude that there is no cross-interaction effect between the two interfacial reactions in the Cu/Sn/Pd sandwich structure. For the Ni/Sn/Pd case, we observed that: (1) after 300 s of reflow time, the (Pd,Ni)Sn4 compound heterogeneously nucleated on the Ni3Sn4 compound layer at the Sn/Ni interface; (2) the growth of the interfacial PdSn4 compound layer was greatly suppressed by the formation of the (Pd,Ni)Sn4 compound at the Sn/Ni interface. We believe that this suppression of PdSn4 growth is caused by heterogeneous nucleation of the (Pd,Ni)Sn4 compound in the Ni3Sn4 compound layer, which decreases the free energy of the entire sandwich reaction system. The difference in the chemical potential of Pd in the PdSn4 phase at the Pd/Sn interface and in the (Pd,Ni)Sn4 phase at the Sn/Ni interface is the driving force for the Pd atomic flux across the molten Sn. The diffusion of Ni into the ternary (Pd,Ni)Sn4 compound layer controls the Pd atomic flux across the molten Sn and the growth of the ternary (Pd,Ni)Sn4 compound at the Sn/Ni interface.  相似文献   

14.
Electroless Ni-P/Cu under-bump metallization (UBM) is widely used in electronics packaging. The Sn3.0Ag0.5Cu lead-free composite solder pastes were produced by a mechanical alloying (MA) process doped with Cu6Sn5 nanoparticles. In this study, the detailed interfacial reaction of Sn3.0Ag0.5Cu composite solders with EN(P)/Cu UBM was investigated after reflow. A field-emission scanning electron microscope (FESEM) was employed to analyze the interfacial morphology and microstructure evolution. The intermetallic compounds (IMCs) formed at the interface between the Sn3.0Ag0.5Cu composite solders and EN(P)/Cu UBM after one and three reflows were mainly (Ni1−x,Cux)3Sn4 and (Cu1−y,Niy)6Sn5. However, only (Ni1−x,Cux)3Sn4 IMC was observed after five reflows. The elemental distribution near the interfacial region was evaluated by an electron probe microanalyzer (EPMA) as well as field-emission electron probe microanalyzer (FE-EPMA). Based on the observation and characterization by FESEM, a EPMA, and an FE-EPMA, the reaction mechanism of interfacial phase transformation between Sn3.0Ag0.5Cu composite solders and EN(P)/Cu UBM after various reflow cycles was discussed and proposed.  相似文献   

15.
The intermetallic compounds (IMCs) formed during the reflow and aging of Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes were investigated. After reflow, the thickness of (Cu, Ni, Au)6Sn5 interfacial IMCs in Sn3Ag0.5Cu0.06Ni0.01Ge was similar to that in the Sn3Ag0.5Cu specimen. The interiors of the solder balls in both packages contained Ag3Sn precipitates and brick-shaped AuSn4 IMCs. After aging at 150°C, the growth thickness of the interfacial (Ni, Cu, Au)3Sn4 intermetallic layers and the consumption of the Ni surface-finished layer on Cu the pads in Sn3Ag0.5Cu0.06Ni0.01Ge solder joints were both slightly less than those in Sn3Ag0.5Cu. In addition, a coarsening phenomenon for AuSn4 IMCs could be observed in the solder matrix of Sn3Ag0.5Cu, yet this phenomenon did not occur in the case of Sn3Ag0.5Cu0.06Ni0.01Ge. Ball shear tests revealed that the reflowed Sn3Ag0.5Cu0.06Ni0.01Ge packages possessed bonding strengths similar to those of the Sn3Ag0.5Cu. However, aging treatment caused the ball shear strength in the Sn3Ag0.5Cu packages to degrade more than that in the Sn3Ag0.5Cu0.06Ni0.01Ge packages.  相似文献   

16.
The effect of a reflow process and under bump metallurgy (UBM) systems on the growth of intermetallic compounds (IMC) of the 57Bi/43Sn and 37Pb/63Sn solder bump/UBM interfaces was investigated. The selected UBM systems were sputtered Al/Ti/Cu, sputtered Al/NiV/Cu, Al/electroless Ni/immersion Au, and Al/Ti/electroless Cu. An alloy electroplating method was used for the solder bumping process. The microstructure and composition of intermetallic compound (IMC) phases and their morphologies were examined using scanning electron microscopy and X-ray diffraction. The Cu6Sn5 η'-phase IMC appeared on all Cu containing UBM cases with Pb/Sn and Bi/Sn solders and the Cu 3Sn ϵ-phase was detected only with Pb/Sn solder bumps. The Ni3Sn4 IMC was found to be the main IMC phase between Ni and solder. The Ni3Sn secondary IMC was also detected on the electroless Ni UBM with PbSn solder after ten times reflow. Through the bump shear test, Al/NiV/Cu, Al/elNi/Au, and Al/Ti/elCu UBMs showed good stability with Bi/Sn and Pb/Sn solder in terms of metallurgical aspects  相似文献   

17.
Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.  相似文献   

18.
The electroless-deposited Ni-P under bump metallurgy (UBM) layer was fabricated on Al pads for Sn containing solder bumps. The amount of P in the electroless Ni film was optimized by controlling complexing agents and the pH of plating solution. The interfacial reaction at the electroless Ni UBM/solder interface was investigated in this study. The intermetallic compound (IMC) formed at the interface during solder reflowing was mainly Ni3Sn4, and a P-rich Ni layer was also formed as a by-product of Ni-Sn reaction between the Ni-Sn IMC and the electroless Ni layer. One to four microns of Ni3Sn4 IMC and a 1800–5000 Å of P-rich Ni layer were formed in less than 10 min of solder reflowing depending on solder materials and reflow temperatures. It was found that the P-rich Ni layer contains Ni, P, and a small amount of Sn (~7 at.%). Further cross-sectional transmission electron microscopy (TEM) analysis confirmed that the composition of the P-rich Ni layer was 75 at.% Ni, 20at.%P, and 5at.%Sn by energy-dispersive x-ray spectroscopy (EDS) and the phase transformation occurred in the P-rich Ni layer by observing grain size. Kirkendall voids were also found in the Ni3Sn4 IMC, just above the P-rich Ni layer after extensive solder reflow. The Kirkendall voids are considered a primary cause of the brittle fracture; restriction of the growth of of the P-rich Ni layer by optimizing proper processing conditions is recommended. The growth kinetics of Ni-Sn IMC and P-rich Ni layer follows three steps: a rapid initial growth during the first 1 min of solder reflow, followed by a reduced growth step, and finally a diffusion-controlled growth. During the diffusion-controlled growth, there was a linear dependence between the layer thickness and time1/2. Flip chip bump shear testing was performed to measure the effects of the IMC and the P-rich Ni layers on bump adhesion property. Most failures occurred in the solder and at the Ni3Sn4 IMC. The brittle characteristics of the Ni-Sn IMC and the Kirkendall voids at the electroless Ni UBM-Sn containing solder system cause brittle bump failure, which results in a decreased bump adhesion strength.  相似文献   

19.
The reactive interdiffusion between a Sn-3.0wt.%Ag-0.7wt.%Cu solder and thin-film Ti/Ni/Ag metallizations on two semiconductor devices, a diode and a metal-oxide-semiconductor field-effect transistor (MOSFET), and a Au-layer on the substrates are studied. Comprehensive microanalytical techniques, scanning electron microscopy, transmission electron microscopy (TEM), and analytical electron microscopy (AEM) are employed to identify the interdiffusion processes during fabrication and service of the devices. During the reflow process of both diode and MOSFET devices, (1) the Ag layer dissolves in the liquid solder; (2) two intermetallics, (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5, form near the back metal/solder interface; and (3) the Au metallization in the substrate side dissolves in the liquid solder, resulting in precipitation of the (Au,Ni,Cu)Sn4 intermetallic during solidification. During solid-state aging of both diode and MOSFET solder joints at 125°C and 200°C, the following atomic transport processes occur: (1) interdiffusion of Cu, Ni, and Sn, leading to the growth of a (Ni,Cu)3Sn4 layer until the Ni layer is completely consumed; (2) interdiffusion of Au, Cu, Ni, and Sn through the (Ni,Cu)3Sn4 layer and unconsumed Ni layer to the Ti layer to form a solid solution; and (3) further interdiffusion of Au, Cu, Ni, and Sn through the (Ni,Cu)3Sn4 layer to from an (Au,Ti,Ni,Cu)Sn4 layer. The growth of the latter layer continues until the entire Ti layer is consumed.  相似文献   

20.
Solders of nominal 95Pb-5Sn and 60Sn-40Pb were used to join Cu plates. The effect of ternary additions of In, Ag, Sb, and Bi to the near-eutectic solder were also investigated. Bulk solder and interfacial joint microstructures were characterized for each solder alloy. The solder joints were strained to failure in tension; joint strength and failure mode were determined. 95Pb-5Sn/Cu and 60Sn-40Pb/Cu specimens were tested both as-processed and after reflow. 95Pb-5Sn/Cu as-processed and reflow specimens failed in tension in a ductile mode. Voids initiated at β-Sn precipitates in the as-processed specimens and at the Cu3Sn intermetallic in the reflow specimens. 60Sn-40Pb/Cu failed transgranularly through the Cu6Sn5 intermetallic in both the as-processed and reflow conditions. The joint tensile strength of the reflow specimens was approximately half that of the as-processed specimens for both the high-Pb and near-eutectic alloys. The Cu6Sn{5} intermetallic dominated the tensile failure mode of the near-eutectic solder/Cu joints. The fracture path of the near-eutectic alloys with ternary additions depended on the presence of Cu6Sn5 rods in the solder within the Cu plates. Specimens with ternary additions of In and Ag contained only interfacial intermetallics and exhibited interfacial failure at the Cu6Sn5. Joints manufactured with ternary additions of Sb and Bi contained rods of Cu6Sn5 within the solder. Tensile failure of the Sb and Bi specimens occurred through the solder at the Cu6Sn5 rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号