首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part A》1999,30(3):221-230
This paper is devoted to the modelling of technological processes of manufacturing of siliconized carbon–carbon composites. The developed model describes the changes that occur in the properties of the composites (strength, elastic moduli, shrinkage) during the technological cycle of manufacturing and also the residual stresses generated in composite structures. It is shown that the level of the residual stresses and the character of changes in the properties of carbon–carbon composites essentially differ from those of polymer–matrix composites.  相似文献   

2.
The modelling of ablation of carbon/carbon (C/C) composites utilized as rocket engine hot parts is addressed under the angle of the competition between bulk transport of reactants and heterogeneous mass transfer, associated to reactivity contrasts between constituent phases. A numerical solver based on a simple model and built on a VOF technique allows direct simulation at two scales. Its application to actual complex materials is performed; the results are consistent with experimental data and help understanding the origin of the material behaviour, either in terms of acquired surface morphology or in terms of effective recession rate.  相似文献   

3.
Experimental data for carbon–carbon constituent materials are combined with a three-dimensional stationary heat-transfer finite element analysis to compute the average transverse and longitudinal thermal conductivities in carbon–carbon composites. Particular attention is given in elucidating the roles of various micro-structural defects such as de-bonded fiber/matrix interfaces, cracks and voids on thermal conductivity in these materials. In addition, the effect of the fiber precursor material is explored by analyzing PAN-based and pitch-based carbon fibers, both in the same type pitch-based carbon matrix. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibers and (b) a macro scale comparable with the thickness of carbon–carbon composite structures used in the thermal protection systems for space vehicles. The results obtain at room temperature are quite consistent with their experimental counterparts. At high temperatures, the model predicts that the contributions of gas-phase conduction and radiation within the micro-structural defects can significantly increase the transverse thermal conductivity of the carbon–carbon composites.  相似文献   

4.
5.
6.
《Composites Part B》2001,32(7):565-574
Impact behaviour and post impact compressive characteristics of glass–carbon/epoxy hybrid composites with alternate stacking sequences have been investigated. Plain weave E-glass and twill weave T-300 carbon have been used as reinforcing materials. For comparison, laminates containing only-carbon and only-glass reinforcements have also been studied. Experimental studies have been carried out on instrumented drop weight impact test apparatus. Post impact compressive strength has been obtained using NASA 1142 test fixture. It is observed that hybrid composites are less notch sensitive compared to only-carbon or only-glass composites. Further, carbon-outside/glass-inside clustered hybrid configuration gives lower notch sensitivity compared to the other hybrid configurations.  相似文献   

7.
In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ~18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.  相似文献   

8.
The development of titanium-doped carbon matrix–carbon fibre reinforced composites (CCCs) via liquid impregnation of carbon fibre preforms using mesophase pitch is studied. Two different approaches for introducing the dopant into the carbon material are investigated. One consists of doping the matrix precursor followed by the densification of the preform with the doped precursor. The second approach consists of doping the porous preform prior to densification with the undoped mesophase pitch. Titanium-doped CCCs with a very fine distribution of dopant (in the nanometric scale) are obtained by adding TiC nanoparticles to the matrix precursor. Thermal decomposition of titanium butoxide on the carbon preform prior to densification yields doped CCCs with higher titanium content, although with larger dopant size. The combination of these two methods shows the best results in terms of dopant content.  相似文献   

9.
Carbon nanotubes (CNTs) were introduced into the precursor infiltration and pyrolysis (PIP) carbon fiber reinforced silicon carbide matrix (Cf/SiC) composite via the infiltration slurry. The weight fraction of CNTs in the composite was 0.765‰. The fiber–matrix interface coating was prepared through chemical vapor deposition (CVD) process using methyltrichlorosilane (MTS). Effects of the CNTs on mechanical and thermal properties of the composite were evaluated by three-point bending test, single-edge notched beam (SENB) test, and laser flash method. Attributed to the introduction of the small quantity of CNTs, flexural strength and fracture toughness of the Cf/SiC composite both increased by 25%, and thermal conductivity at room temperature increased by 30%.  相似文献   

10.
Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (P(O)(OH)2). Strong covalent CP bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (OH, CO, C(O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests.  相似文献   

11.
Polypyrrole (PPy) coatings have potential applications in batteries, fuel cells, sensors, anti-corrosion coatings, and drug delivery systems. In this article, PPy film coating on the electrode of quartz crystal microbalance (QCM) was exposed to acidic aqueous HAuCl4 solution. The reduction for gold ions took place and gold particles were produced at the film surface. The gold content at the PPy film was monitored by using QCM. The concentration of gold uptake increases as the original concentration of HAuCl4 solution increases. The morphology of the film before and after the deposition of the gold particles was studied by the scanning electron microscopy coupled with energy dispersive X-ray spectrometry. The gold particles are of undefined shape and have diameters around 200–600 nm. However, the image of the composite powder shows that gold particles of sizes 100–120 nm are distributed over the surface of the polymer particles with some aggregation. Infrared spectroscopy and X-ray diffraction were used to characterize the composite.  相似文献   

12.
An investigation into the effect of size on the quantitative estimation of defect depth in a SiC coated carbon–carbon (C/C) composite has been undertaken by lock-in thermography. A dedicated 3-D thermal modeling has been introduced, and an efficient numerical algorithm based on finite-difference splitting method in time domain (FDSM-TD) is applied to solve the thermal model. The heat transfer partial differential equation (PDE) and mathematic morphological algorithms are used to filter the phase angle data noise. The diameter of a defect had an appreciable effect on the observed phase angle which consequently has significant implications with regard to estimating the defect depth. Phase angle contrast measurements for a range of defects in a 6.0 mm SiC coated C/C composite specimen indicate that an optimal excitation frequency of 0.525 Hz is available for defect detection. Results obtained with an excitation frequency of 0.525 Hz are used to discuss the limitations of determining the defect size and depth.  相似文献   

13.
The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (ks), diffusion coefficient (D) and the surface adsorption amount (Γ?) of ACOP on GR–CS/GCE were determined to be 0.25 s? 1, 3.61 × 10? 5 cm2 s? 1 and 1.09 × 10? 9 mol cm? 2, respectively. Additionally, a 2e?/2H+ electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10? 6 to 1.0 × 10? 4 M with a low detection limit of 3.0 × 10? 7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations.  相似文献   

14.
Abstract

The dynamic deformation characteristics and failure behaviour of laminated carbon fibre reinforced Al–Li metal matrix composite has been studied experimentally with the objective of investigating the dependence of mechanical properties on the applied strain rate and fibre volume fraction. A vacuum melting/casting process was used for manufacturing the tested composite. Impact testing was performed using a Saginomiya 100 metal forming machine and a compressive split Hopkinson bar over a strain rate range of 10-1 s-1 to 3×103 s-1. It is shown that the flow stress of the composite increases with strain rate and fibre volume fraction. The highest elongation to fracture values were found at low rate loading conditions, although a significant increase in ductility is obtained in the dynamic range. The composite appears to exhibit a lower rate of work hardening during dynamic deformation. Strain rate sensitivity and activation volume are strongly dependent on strain rate and fibre volume fraction. Fractographic analysis using scanning electron microscopy reveals that there is a distinct difference in the morphologies of the fractures, with corresponding different damage mechanisms, between specimens tested at low and high strain rates. Both strain rate and fibre volume fraction are important in controlling fibre fragment length and the density of the Al–Li debris. The relationships between mechanical response and fracture characteristics are also discussed.  相似文献   

15.
Acid functionalized single walled carbon nanotubes were covalently grafted to chitosan by first reacting the oxidized carbon nanotubes with thionyl chloride to form acyl-chlorinated carbon nanotubes which are subsequently dispersed in chitosan and covalently grated to form composite material, CNT–chitosan, 1, which was washed several times to remove un-reacted materials. This composite has been characterized by FTIR, 13C NMR, TGA, SEM and TEM and has been shown to exhibit enhanced thermal stability. The reaction of 1, with poly lactic acid has also been accomplished to yield CNTchitosan–g-poly(LA), 2 and fully characterized by the above techniques. Results showed covalent attachment of chitosan and chitosan–poly lactic acid to the carbon nanotubes.  相似文献   

16.
《Materials Letters》2002,52(1-2):14-19
The effect of matrix microstructure on the mechanical properties of carbon fiber felts infiltrated by isothermal chemical vapor infiltration (CVI) has been studied by optical microscopy, scanning electron microscopy and three-point bending tests. The nonbrittle fracture behavior of the investigated composites is related to multiple crack deflections caused by the interfacial sliding between pyrocarbon layers with a varying texture degree and the delamination microcracking within the highly textured pyrocarbon layer. An increase of the flexural strength is observed by the composite having a multilayered pyrocarbon matrix.  相似文献   

17.
The influence of corrosion mediums on the corrosion behaviour of a carbon fibre reinforced aluminium composite fabricated by the NaK method has been studied. The results obtained indicate that serious corrosion is produced after 2 weeks immersion in distilled water or in 3·5% salt solution, and long exposure to air will cause corrosion at defective zones (i.e. grain boundaries, the CAl interface). On the basis of the results obtained, the corrosion mechanism of this composite is discussed in detail.  相似文献   

18.
The effect of fire on the tensile properties of carbon fibres is experimentally determined to provide new insights into the tensile performance of carbon fibre–polymer composite materials during fire. Structural tests on carbon–epoxy laminate reveal that thermally-activated weakening of the fibre reinforcement is the dominant softening process which leads to failure in the event of a fire. This process is experimentally investigated by determining the reduction to the tensile properties and identifying the softening mechanism of T700 carbon fibre following exposure to simulated fires of different temperatures (up to 700 °C) and atmospheres (air and inert). The fibre modulus decreases with increasing temperature (above ~500 °C) in air, which is attributed to oxidation of the higher stiffness layer in the near-surface fibre region. The fibre modulus is not affected when heated in an inert (nitrogen) atmosphere due to the absence of surface oxidation, revealing that the stiffness loss of carbon fibre composites in fire is sensitive to the oxygen content. The tensile strength of carbon fibre is reduced by nearly 50% following exposure to temperatures over the range 400–700 °C in an air or inert atmosphere. Unlike the fibre modulus, the reduction in fibre strength is insensitive to the oxygen content of the atmosphere during fire. The reduction in strength is possibly attributable to very small (under ~100 nm) flaws and removal of the sizing caused by high temperature exposure.  相似文献   

19.
In the present work, HA reinforced with Al2O3 and multiwalled carbon nanotubes (CNTs) is processed using spark plasma sintering (SPS). Vickers micro indentation and nanoindentation of the samples revealed contrary mechanical properties (hardness of 4.0, 6.1, and 4.4 GPa of HA, HA–Al2O3 and HA–Al2O3–CNT samples at bulk scale, while that of 8.0, 9.0, and 7.0 GPa respectively at nanoscale), owing to the difference in the interaction of the indenter with the material at two different length scales. The addition of Al2O3 reinforcement has been shown to enhance the indentation fracture toughness of HA matrix from 1.18 MPa m1/2 to 2.07 MPa m1/2. Further CNT reinforcement has increased the fracture toughness to 2.3 times (2.72 MPa m1/2). In vitro biocompatibility of CNT reinforced HA–Al2O3 composite has been evaluated using MTT assay on mouse fibroblast L929 cell line. Cell adhesion and proliferation have been characterized using scanning electron microscopy (SEM), and have been quantified using UV spectrophotometer. The combination of cell viability data as well as microscopic observations of cultured surfaces suggests that SPS sintered HA–Al2O3–CNT composites exhibit the ability to promote cell adhesion and proliferation on their surface and prove to be promising new biocompatible materials.  相似文献   

20.
In this study, dry sliding wear behavior and corrosion resistance of Al–Cu–SiC–xNi (x: 0, 0.5, 1, 1.5 wt.%) composites were investigated. Effect of nickel content on the microstructure and hardness of the alloys was also studied. Wear tests were conducted using a ball on disc wear test device. Corrosion behavior of Al–Cu–SiC–xNi composite alloys in 3.5% NaCl solution was investigated by using potentiodynamic polarization, impedance spectroscopy and cronoamperometric methods. The results showed that the hardness of the composite alloy increases with increasing nickel content. Maximum wear resistance is reported with the addition of 1 wt.%Ni. It was determined that corrosion resistance of Al–Cu–SiC composite alloys improved with increasing nickel content in the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号