首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Self-organized InAs quantum-dot (QD) lasers emitting at 1.5 /spl mu/m were grown by gas source molecular beam epitaxy on (100) InP substrates. Room temperature continuous-wave (CW) operation of QD-based buried ridge stripe lasers is reported. We investigated experimentally the relevant CW performances of as-cleaved InP-based QD lasers for telecom applications such as temperature properties (T/sub 0/=56 K), infinite length threshold current density (J/sub /spl infin///spl sim/150 A/cm/sup 2/ per QDs layer) and internal efficiency (0.37 W/A). Lasing in pulsed mode is observed for cavity length as short as 200 /spl mu/m with a threshold current of about 37 mA, demonstrating the high gain of the QD's active core. In addition, the Henry parameter of these InP-based QD lasers is experimentally determined using the Hakki-Paoli method (/spl alpha//sub H//spl sim/2.2).  相似文献   

2.
We report the growth and fabrication of bound-to-bound In/sub 0.53/Ga/sub 0.47/As-InP quantum-well infrared photodetectors using metal-organic vapor phase epitaxy. These detectors have a peak detection wavelength of 8.5 /spl mu/m. The peak responsivities are extremely large with R/sub pk/=6.9 A/W at bias voltage V/sub b/=3.4 V and temperature T=10 K. These large responsivities arise from large detector gain that was found to be g/sub n/=82 at V/sub b/=3.8 V from dark current noise measurements at T=77 K and g/sub p/=18.4 at V/sub b/=3.4 V from photoresponse data at T=10 K. The background-limited temperature with F/1.2 optics is T/sub BLIP/=65 K for 0相似文献   

3.
A semiconductor laser containing seven InAs-InGaAs stacked quantum-dot (QD) layers was grown by molecular beam epitaxy. Shallow mesa ridge-waveguide lasers with stripe width of 120 /spl mu/m were fabricated and tested. A high modal gain of 41 cm/sup -1/ was obtained at room temperature corresponding to a modal gain of /spl sim/6 cm/sup -1/ per QD layer, which is very promising to enable the realization of 1.3-/spl mu/m ultrashort cavity devices such as vertical-cavity surface-emitting lasers. Ground state laser action was achieved for a 360-/spl mu/m-cavity length with as-cleaved facets. The transparency current density per QD layer and internal quantum efficiency were 13 A/cm/sup 2/ and 67%, respectively.  相似文献   

4.
This work reports the development of high power 4H-SiC bipolar junction transistors (BJTs) by using reduced implantation dose for p+ base contact region and annealing in nitric oxide of base-to-emitter junction passivation oxide for 2 hours at 1150/spl deg/C. The transistor blocks larger than 480 V and conducts 2.1 A (J/sub c/=239 A/cm/sup 2/) at V/sub ce/=3.4 V, corresponding to a specific on-resistance (R/sub sp on/) of 14 m/spl Omega/cm/sup 2/, based on a drift layer design of 12 /spl mu/m doped to 6/spl times/10/sup 15/cm/sup -3/. Current gain /spl beta//spl ges/35 has been achieved for collector current densities ranging from J/sub c/=40 A/cm/sup 2/ to 239 A/cm/sup 2/ (I/sub c/=2.1 A) with a peak current gain of 38 at J/sub c/=114 A/cm/sup 2/.  相似文献   

5.
A new and interesting InGaP/Al/sub x/Ga/sub 1-x/As/GaAs composite-emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied. Based on the insertion of a compositionally linear graded Al/sub x/Ga/sub 1-x/As layer, a near-continuous conduction band structure between the InGaP emitter and the GaAs base is developed. Simulation results reveal that a potential spike at the emitter/base heterointerface is completely eliminated. Experimental results show that the CEHBT exhibits good dc performances with dc current gain of 280 and greater than unity at collector current densities of J/sub C/=21kA/cm/sup 2/ and 2.70/spl times/10/sup -5/ A/cm/sup 2/, respectively. A small collector/emitter offset voltage /spl Delta/V/sub CE/ of 80 meV is also obtained. The studied CEHBT exhibits transistor action under an extremely low collector current density (2.7/spl times/10/sup -5/ A/cm/sup 2/) and useful current gains over nine decades of magnitude of collector current density. In microwave characteristics, the unity current gain cutoff frequency f/sub T/=43.2GHz and the maximum oscillation frequency f/sub max/=35.1GHz are achieved for a 3/spl times/20 /spl mu/m/sup 2/ device. Consequently, the studied device shows promise for low supply voltage and low-power circuit applications.  相似文献   

6.
Stacked InAs/InGaAs quantum dots are used as an active media of metamorphic InGaAs-InGaAlAs lasers grown on GaAs substrates by molecular beam epitaxy. High quantum efficiency (/spl eta//sub i/>60%) and low internal losses (/spl alpha/<3-4 cm/sup -1/) are realised. The transparency current density per single QD layer is estimated as /spl sim/70 A/cm/sup 2/ and the characteristic temperature is 60 K (20-85/spl deg/C). The emission wavelength exceeds 1.51 /spl mu/m at temperatures above 60/spl deg/C.  相似文献   

7.
Lee  J.J. Mawst  L.J. Botez  D. 《Electronics letters》2003,39(17):1250-1252
Doping the waveguide core (p=2/spl times/10/sup 17/ cm/sup -1/) in asymmetric-waveguide InGaAs/InGaAsP, two-quantum-well diode lasers (/spl lambda/=980 nm) raises the injection efficiency to 90% and decreases the threshold-current density, J/sub th/. For 2 mm long, 100 /spl mu/m wide stripe, uncoated chips J/sub th/ decreases from /spl sim/188 A/cm/sup 2/ to /spl sim/150 A/cm/sup 2/. High characteristic temperatures for J/sub th/ and the slope efficiency are obtained: T/sub 0/=215K and T/sub 1/=600K.  相似文献   

8.
Strain-compensated InGaAsSb-AlGaAsSb quantum-well (QW) lasers emitting near 2.5 /spl mu/m have been grown by solid-source molecular beam epitaxy. The relatively high arsenic composition causing a tensile strain in the Al/sub 0.25/GaAs/sub 0.08/Sb barriers lowers the valence band edge and the hole energy level, leading to an increased hole confinement and improved laser performance. A 60% external differential efficiency in pulsed mode was achieved for 1000-/spl mu/m-long lasers emitting at 2.43 /spl mu/m. A characteristic temperature T/sub 0/ as high as 163 K and a lasing-wavelength temperature dependence of 1.02 nm//spl deg/C were obtained at room temperature. For 2000 /spl times/ 200 /spl mu/m/sup 2/ broad-area three-QW lasers without lateral current confinement, a low pulsed threshold of 275 A/cm/sup 2/ was measured.  相似文献   

9.
This paper presents the development of 1000 V, 30A bipolar junction transistor (BJT) with high dc current gain in 4H-SiC. BJT devices with an active area of 3/spl times/3 mm/sup 2/ showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm/sup 2/, at a forward voltage drop of 2 V. A common-emitter current gain of 40, along with a low specific on-resistance of 6.0m/spl Omega//spl middot/cm/sup 2/ was observed at room temperature. These results show significant improvement over state-of-the-art. High temperature current-voltage characteristics were also performed on the large-area bipolar junction transistor device. A collector current of 10A is observed at V/sub CE/=2 V and I/sub B/=600 mA at 225/spl deg/C. The on-resistance increases to 22.5 m/spl Omega//spl middot/cm/sup 2/ at higher temperatures, while the dc current gain decreases to 30 at 275/spl deg/C. A sharp avalanche behavior was observed at a collector voltage of 1000 V. Inductive switching measurements at room temperature with a power supply voltage of 500 V show fast switching with a turn-off time of about 60 ns and a turn-on time of 32 ns, which is a result of the low resistance in the base.  相似文献   

10.
We realized a triple-stacked 1.3-/spl mu/m InAs quantum dot (QD) with a high density of 2.4/spl times/10/sup 11/ cm/sup -2/ and a high uniformity of below 24 meV that employs an As/sub 2/ source and a gradient composition (GC) strain-reducing layer (SRL) grown on a GaAs substrate. We demonstrated the 1.3-/spl mu/m wavelength emission of this triple-stacked QD laser with a 0.92-mm cavity length and a cleaved facet at room temperature. In addition, we realized the highest maximum modal gain yet reported of 8.1 cm/sup -1/ per QD layer at beyond 1.28 /spl mu/m by using our high-density and high-uniformity QD.  相似文献   

11.
This letter reports the design and fabrication of 4H-SiC bipolar junction transistors with both high voltage (>1kV) and high dc current gain (/spl beta/=32) at a collector current level of I/sub c/=3.83A (J/sub c/=319 A/cm/sup 2/). An Al-free base ohmic contact has been used which, when compared with BJTs fabricated with Al-based base contact, shows clearly improved blocking voltage. A specific on-resistance of 17 m/spl Omega//spl middot/cm/sup 2/ has been achieved for collector current densities up to 289 A/cm/sup 2/.  相似文献   

12.
This letter reports a newly achieved best result on the specific ON-resistance (R/sub SP/spl I.bar/ON/) of power 4H-SiC bipolar junction transistors (BJTs). A 4H-SiC BJT based on a 12-/spl mu/m drift layer shows a record-low specific-ON resistance of only 2.9 m/spl Omega//spl middot/cm/sup 2/, with an open-base collector-to-emitter blocking voltage (V/sub ceo/) of 757 V, and a current gain of 18.8. The active area of this 4H-SiC BJT is 0.61 mm/sup 2/, and it has a fully interdigitated design. This high-performance 4H-SiC BJT conducts up to 5.24 A at a forward voltage drop of V/sub CE/=2.5 V, corresponding to a low R/sub SP-ON/ of 2.9 m/spl Omega//spl middot/cm/sup 2/ up to J/sub c/=859 A/cm/sup 2/. This is the lowest specific ON-resistance ever reported for high-power 4H-SiC BJTs.  相似文献   

13.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

14.
High-electron mobility transistors (HEMTs) were fabricated from heterostructures consisting of undoped In/sub 0.2/Al/sub 0.8/N barrier and GaN channel layers grown by metal-organic vapor phase epitaxy on (0001) sapphire substrates. The polarization-induced two-dimensional electron gas (2DEG) density and mobility at the In/sub 0.2/Al/sub 0.8/N/GaN heterojunction were 2/spl times/10/sup 13/ cm/sup -2/ and 260 cm/sup 2/V/sup -1/s/sup -1/, respectively. A tradeoff was determined for the annealing temperature of Ti/Al/Ni/Au ohmic contacts in order to achieve a low contact resistance (/spl rho//sub C/=2.4/spl times/10/sup -5/ /spl Omega//spl middot/cm/sup 2/) without degradation of the channels sheet resistance. Schottky barrier heights were 0.63 and 0.84 eV for Ni- and Pt-based contacts, respectively. The obtained dc parameters of 1-/spl mu/m gate-length HEMT were 0.64 A/mm drain current at V/sub GS/=3 V and 122 mS/mm transconductance, respectively. An HEMT analytical model was used to identify the effects of various material and device parameters on the InAlN/GaN HEMT performance. It is concluded that the increase in the channel mobility is urgently needed in order to benefit from the high 2DEG density.  相似文献   

15.
InAsSb-InAsSbP double heterostructure diode lasers have been grown by metal-organic chemical vapor deposition on (100) InAs substrates. High-output powers of 660 mW in pulse mode and 300 mW in continuous wave operation with 400-/spl mu/m cavity length and 100-/spl mu/m-wide aperture at 78 K have been obtained. These devices showed low threshold current density of 40 A/cm/sup 2/, low internal loss of 3.0 cm/sup -1/, far-field /spl theta//sub /spl perp// of 34/spl deg/ with differential efficiency of 90% at 78 K, and high operating temperatures of 220 K.  相似文献   

16.
The low-frequency noise characteristics of p-n-p InAlAs/InGaAs heterojunction bipolar transistors (HBTs) were investigated. Devices with various geometries were measured under different bias conditions. The base noise current spectral density (3.11 /spl times/ 10/sup -16/ A/sup 2//Hz) was found to be higher than the collector noise current spectral density (1.48 /spl times/ 10/sup -16/ A/sup 2//Hz) at 10 Hz under low bias condition (I/sub C/=1 mA, V/sub EC/=1 V), while the base noise current spectral density (2.04 /spl times/ 10/sup -15/ A/sup 2//Hz) is lower than the collector noise current spectral density (7.87 /spl times/ 10/sup -15/ A/sup 2//Hz) under high bias condition (I/sub C/=10 mA, V/sub EC/=2 V). The low-frequency noise sources were identified using the emitter-feedback technique. The results suggest that the low-frequency noise is a surface-related process. In addition, the dominant noise sources varied with bias levels.  相似文献   

17.
The InAs-InAlGaAs quantum dot (QD) lasers with the InAlGaAs-InAlAs material system were fabricated on distributed feedback (DFB) grating structures on InP [001]. The single-mode operation of InAs-InAlGaAs QD DFB lasers in continuous-wave mode was successfully achieved at the emission wavelength of 1.564 /spl mu/m at room temperature. This is the first observation on the InP-based QD lasers operating around the emission wavelength window of 1.55 /spl mu/m. The threshold current density of the InAs-InAlGaAs QD DFB laser with a cavity length of 1 mm and a ridge width of 3 /spl mu/m, in which one of the cleaved facets was coated with 95% high-reflection, was 1.23 kA/cm/sup 2/ (176 A/cm/sup 2/ for single QD layer). The sidemode suppression ratio value of the QD DFB laser was as high as 42 dB at the driving current of 100 mA.  相似文献   

18.
Si/SiGe n-type modulation-doped field-effect transistors grown on a very thin strain-relieved Si/sub 0.69/Ge/sub 0.31/ buffer on top of a Si(100) substrate were fabricated and characterized. This novel type of virtual substrate has been created by means of a high dose He ion implantation localized beneath a 95-nm-thick pseudomorphic SiGe layer on Si followed by a strain relaxing annealing step at 850/spl deg/C. The layers were grown by molecular beam epitaxy. Electron mobilities of 1415 cm/sup 2//Vs and 5270 cm/sup 2//Vs were measured at room temperature and 77 K, respectively, at a sheet carrier density of about 3/spl times/10/sup 12//cm/sup 2/. The fabricated transistors with Pt-Schottky gates showed good dc characteristics with a drain current of 330 mA/mm and a transconductance of 200 mS/mm. Cutoff frequencies of f/sub t/=49 GHz and f/sub max/=95 GHz at 100 nm gate length were obtained which are quite close to the figures of merit of a control sample grown on a conventional, thick Si/sub 0.7/Ge/sub 0.3/ buffer.  相似文献   

19.
We propose an optically pumped laser based on intersublevel transitions in InAs-GaAs pyramidal self-assembled quantum dots. A theoretical rate equations model of the laser is given in order to predict the dependence of the gain on pumping flux and temperature. The energy levels and wave functions were calculated using the 8-band k/spl middot/p method where the symmetry of the pyramid was exploited to reduce the computational complexity. Carrier dynamics in the laser were modeled by taking both electron-longitudinal optical phonon and electron-longitudinal acoustic phonon interactions into account. The proposed laser emits at 14.6 /spl mu/m with a gain of g/spl ap/ 570 cm/sup -1/ at the pumping flux /spl Phi/=10/sup 24/ cm/sup -2/ s/sup -1/ and a temperature of T=77 K. By varying the size of the investigated dots, laser emission in the spectral range 13-21 /spl mu/m is predicted. In comparison to optically pumped lasers based on quantum wells, an advantage of the proposed type of laser is a lower pumping flux, due to the longer carrier lifetime in quantum dots, and also that both surface and edge emission are possible. The appropriate waveguide and cavity designs are presented, and by comparing the calculated values of the gain with the estimated losses, lasing is predicted even at room temperature for all the quantum dots investigated.  相似文献   

20.
The ten stacked self-assembled InAs/GaAs quantum dot infrared photodetectors (QDIP) with different Al/sub 0.3/Ga/sub 0.7/As barrier widths and growth temperatures were prepared. Asymmetric current-voltage (I-V) characteristics and 2/spl sim/7.5 /spl mu/m detection window were observed. Peak responsivity of 84 mA/W at -0.4 V and peak specific detectivity of 2.5/spl times/10/sup 9/ cm-Hz/sup 1/2//W at zero bias were observed at 50 K. The characteristics of polarization insensitivity over the incident light and the high background photocurrent suggest that the self-assembled QDIP can be operated at higher temperature (/spl sim/250 K) under normal incidence condition in contrast to quantum well infrared photodetector (QWIP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号