首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly a decade after first commercialization, high field asymmetric waveform ion mobility spectrometry (FAIMS) has yet to find its place in routine chemical analysis. Prototypes have been used to demonstrate the utility of this separation technique combined with mass spectrometry (MS). Unfortunately, first generation commercial FAIMS instruments have gone practically unused by early adopters. Here, we show this to be due to poor ion transmission in the FAIMS-MS source interface. We present simple instrumental modifications and optimization of experimental conditions to achieve good performance from the first generation commercial FAIMS device (the Ionalytics Selectra) coupled to a high resolution Q-TOF-MS. In combination with nanospray ionization, we demonstrate for the first time the nontarget analysis of urine by FAIMS with minimal sample preparation. We show the unique suitability of electrospray ionization (ESI)-FAIMS-MS for identification of low abundance species such as urinary biomarkers of damage of nucleic acids in a complex biological matrix. The elimination of electrospray noise and matrix components by FAIMS and the continuous flow of analytes through FAIMS for accurate and tandem mass analysis produce high quality spectral data suitable for structural identification of unknowns. These characteristics make ESI-FAIMS-MS ideal for nontarget identification, even when compared to high efficiency LC-ESI-MS.  相似文献   

2.
Haloacetic acids (HAAs) are major byproducts of chlorination of drinking water. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry (ESI-FAIMS-MS) provides a tool for direct monitoring of these compounds. However, treated drinking water samples can be challenging to analyze due to the large number of chemicals present and due to matrix effects that can hinder quantitation of analytes. We developed a standard addition ESI-FAIMS-MS method that permits submicrogram per liter detection of haloacetic acids and overcomes matrix effects. An advantage of FAIMS is increased selectivity through a significant reduction in the chemical background from ESI. Moreover, detection limits with this method are much lower than with previously existing GC and GC/MS methods, and quantitation results compare favorably with other existing methods. This new method does not require sample preparation or chromatographic separation and provides a fast, simple, sensitive, and selective method for monitoring HAAs.  相似文献   

3.
The lower limit of detection for low molecular weight polar and ionic analytes using electrospray ionization-mass spectrometry (ESI-MS) is often severely compromised by an intense background that obscures ions of trace components in solution. Recently, a new technique, referred to as high-field asymmetric waveform ion mobility spectrometry (FAIMS), has been shown to separate gas-phase ions at atmospheric pressure and room temperature. A FAIMS instrument is an ion filter that may be tuned, by control of electrical voltages, to continuously transmit selected ions from a complex mixture. This capability offers significant advantages when FAIMS is coupled with ESI, a source that generates a wide variety of ions, including solvent clusters and salt adducts. In this report, the tandem arrangement of ESI-FAIMS-MS is used for the analysis of haloacetic acids, a class of disinfection byproducts regulated by the US EPA. FAIMS is shown to effectively discriminate against background ions resulting from the electrospray of tap water solutions containing the haloacetic acids. Consequently, mass spectra are simplified, the selectivity of the method is improved, and the limits of detection are lowered compared with conventional ESI-MS. The detection limits of ESI-FAIMS-MS for six haloacetic acids ranged between 0.5 and 4 ng/mL in 9:1 methanol/tap water (5 and 40 ng/mL in the original tap water samples) with no preconcentration, derivatization, or chromatographic separation prior to analysis.  相似文献   

4.
Electrospray ionization (ESI) high-field asymmetric waveform ion mobility spectrometry (FAIMS) was combined with quadrupole, time-of-flight, and tandem mass spectrometry to characterize commercial and naturally occurring naphthenic acids (NA) mixtures. This new method provides quantitatively reliable mass and isomer distributions of NA components in approximately 3 min without extensive sample preparation. ESI-FAIMS-MS seems to be especially useful for characterization of fragile ions that cannot be detected by other methods. A unique part of this technique is separation of structural isomers that proved to be critical in determination of elemental composition and in structure elucidation. Tandem mass spectrometry of NA ions separated by FAIMS provides more information about the structure of NA than other methods in the field of NA analysis.  相似文献   

5.
The continuous gas-phase ion separation and atmospheric pressure focusing properties of high-field asymmetric waveform ion mobility spectrometry (FAIMS) offer significant advantages for the mass spectrometric analysis of tryptic digests of proteins. In this study, tryptic peptides of pig hemoglobin were examined by ESI-FAIMS-MS using a newly designed FAIMS device. The new, hemispherical geometry of the inner electrode served to deliver the ions, via the gas flows, to the center axis of the FAIMS analyzer, improving the sensitivity relative to previous prototypes. Mass spectra collected using this new FAIMS showed significantly less chemical background noise than conventional ESI-MS, while maintaining approximately the same absolute sensitivity as that observed with ESI-MS. As a consequence of the ion separation in FAIMS, the identification of the tryptic fragments was simplified and some peptides, such as the triply protonated WAGVANALAHK3+, that were obscured by the intense background of ESI-MS, were readily detected using ESI-FAIMS-MS. In addition, the FAIMS device was shown to separate isobaric ions at m/z 532.4. Correlations between CV and mass-to-charge ratio, as well as CV and ionic collision cross section, were evaluated for 38 peptide ions identified in the tryptic digest. The correlation between the CV of the peptide and the mass-to-charge ratio is very poor, indicating good orthogonality between the separation by FAIMS and the separation by mass spectrometry.  相似文献   

6.
The potential of gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC/TOF-MS) for screening of organic pollutants in water has been explored. After optimization of the solid-phase microextraction (SPME) step, where parameters such as fiber selection and addition of salt were studied, this extraction technique was applied to the analysis of different types of water samples. Investigation of 60 target organic pollutants, including pesticides, octyl/nonyl phenols, pentachlorobenzene, and polycyclic aromatic hydrocarbons (PAHs) was carried out by evaluating the presence of up to five representative m/z ions per analyte, measured at high mass accuracy, and the attainment of their Q/q (Q, quantitative ion; q, confirmative ion) intensity ratio. This strategy led to the detection of 4-t-octylphenol, simazine, terbuthylazine, chlorpyrifos, terbumeton, and terbutryn in several water samples at low part-per-billion levels. Full spectrum acquisition data generated by the TOF-MS analyzer also allowed subsequent investigation of the presence of polybrominated diphenyl ethers and several fungicides in samples after MS data acquisition, without the need to reanalyze the water samples. In addition, nontarget analysis was also tested by application of a deconvolution software. Several organic pollutants that did not form a part of the list of contaminants investigated were identified in the water samples, thanks to the excellent sensitivity of TOF-MS in full spectrum acquisition mode and the valuable accurate mass information provided by instrument. Bisphenol A, the antioxidant 3,5-di-tert-butyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO), the polycyclic musk galaxolide, and the UV filter benzophenone were some of the compounds present in the water samples analyzed. SPME in combination with GC/TOF-MS has been proved to be an attractive and powerful approach for the rapid screening of multiclass organic pollutants in water, with very little sample manipulation and no solvent consumption. This combination provides to the analyst with information-rich MS data that facilitates the reliable identification of many different organic compounds in samples.  相似文献   

7.
A single multiresidue method was developed to determine 109 priority organic compounds included in the 76/464/EEC Council Directive on Pollution of the European Union. Such Directive includes 132 priority pollutants with a broad spectrum of polarities to be analyzed in drinking and surface waters, with the aim to protect water quality. From this list, the compounds analyzed included benzidines, chloroanilines, chloronitrobenzenes, chloronitrotoluenes, chlorophenols, chloronitrotoluidines, PAHs, PCBs, pesticides, phenylurea, and triazine herbicides. The method was developed in four steps. First, automated off-line solid-phase extraction using polymeric sorbent Oasis 60 mg cartridges was optimized to trap 109 compounds. Second, gas chromatography coupled to mass spectrometry with electron impact ionization (GC/EI/MS) was used in selected ion monitoring (SIM) mode for tentative identification of target analytes. Third, GC/EI/MS under full scan conditions was used for spectrum identification and analyte confirmation. Last, quantification was performed from SIM chromatogram using surrogates and internal standard. This method offered excellent sensitivity and selectivity, and the preconcentration of 200 mL permitted the achievement of limits of detection at the low nanogram/liter level and recoveries between 70 and 120%. Such methodology was applied to determine 109 organic compounds in French surface waters, and several pollutants were detected at levels from ppt to ppb. This multiresidue method developed was highly reproducible and robust and permitted a high sample throughput.  相似文献   

8.
Nontarget analysis and identification of unknown polyhalogenated compounds is important in acquiring a thorough picture of the present pollution status as well as for identifying emerging environmental problems. Such analyses usually require the application of electron ionization mass spectrometry because the resulting mass spectra frequently allow for compound identification. When quadrupoles are used as mass separators, the full scan technique often suffers from low sensitivity along with nonspecificity for polyhalogenated trace compounds which often result in interference by matrix compounds. We have developed a novel nontarget gas chromatography/electron ionization-mass spectrometry-selected ion monitoring (GC/EI-MS-SIM) method that overcomes these sensitivity and selectivity issues. Our method is based on the fact that the molecular ions and isotope patterns of polyhalogenated compounds involve the most relevant primary information with regard to the structure of polyhalogenated compounds. Additionally, the retention times of polyhalogenated compounds generally increase with increasing molecular weight. The retention time range of polyhalogenated compounds was divided in three partly overlapping segments of 112 u (segment A: m/z 300-412; segment B: m/z 350-462; segment C: m/z 450-562) that were screened in eight GC runs consisting of 15 consecutive SIM ions. This method was tested with a passive water sampler extract known to contain over 30 polyhalogenated compounds according to the sensitive analysis by GC/electron capture negative ion (ECNI)-MS. While none of these polyhalogenated compounds could be detected by GC/EI-MS in full scan mode, our nontarget GC/EI-MS-SIM method allowed for the detection of 38 polyhalogenated compounds. Only seven could be identified by means of reference standards while more than 15 of the unknowns could be traced back to at least the class of compounds based on the mass spectrometric data from the nontarget SIM runs. All compounds identified originated from halogenated natural products. The nontarget GC/EI-MS-SIM method combines the high sensitivity obtainable with quadrupole systems for trace analysis with the structural information essential for the identification of unknown pollutants.  相似文献   

9.
Three mass spectrometric techniques have been used and compared for the confirmation of the presence of several pesticides that had been detected in environmental water samples by a previously reported SPE-LC-MS/MS screening method. The 2002/657/EC European Comission Decision establishes the need to obtain at least three identification points (IPs) in order to confirm organic residues and contaminants in live animals and animal products. In this paper, a similar approach has been applied for confirmation of pesticides in water samples, using triple quadrupole mass spectrometry (QqQ), time-of-flight mass spectrometry (TOF), and hybrid quadrupole time-of-flight mass spectrometry (QTOF) to achieve the required IPs. The number of IPs collected, the sensitivity, and the practical advantages and disadvantages of these techniques have been discussed. In summary, the QqQ instrument allowed the confirmation of detected pesticides even at very low concentrations (ng/L) achieving between four and five IPs when adding confirmatory transitions. The direct confirmation with a TOF instrument was only feasible for those compounds showing sufficient sensitivity, isotopic pattern, or easy in-source fragmentation. In other cases, the required IPs could be reached by adding IPs earned with this technique to those obtained from the MS/MS screening method. Finally, the use of a QTOF instrument allowed obtaining up to 20 IPs in a single run at relatively high concentrations (submicrograms per liter) as no "ion shopping" was required. Additionally, the application of TOF and QTOF techniques made it possible to detect some nontarget organic contaminants, which were not included in the screening method.  相似文献   

10.
Organochlorine pesticides by LC-MS   总被引:1,自引:0,他引:1  
Contamination of water resources by organochlorine pesticides (OCPs) continues to receive widespread attention because of the increasing concern regarding their high persistence and bioaccumulation. These organic pollutants are not amenable by liquid chromatography (LC) coupled to atmospheric pressure ionization-mass spectrometry, which represents the method of choice for the characterization of pesticide residues in water. Gas chromatography-mass spectrometry provides excellent response for OCPs, but it falls short when complex, multiresidue analyses are required. As recently demonstrated, an efficient EI-based LC-MS interface can generate very good spectra for an extremely wide range of small-medium molecular weight molecules of different polarity and can represent a valid tool in solving the analytical challenge of analyzing OCPs by LC-MS. Based on this assumption, we present a new approach for the determination of 12 OCPs in water samples. The method requires a solid-phase extraction preconcentration step followed by nanoscale liquid chromatography coupled to a direct-electron ionization direct interface (Direct-EI). Direct-EI is a miniaturized interface for efficiently coupling a liquid chromatograph with an EI mass spectrometer. The capability to acquire high-quality EI spectra in a wide range of concentrations, and to operate in selected ion monitoring mode during analyses, allowed a precise quantification of the OCPs. Without sample injection enrichment, limits of detection of the method span from 0.044 to 0.33 microg/L, corresponding to an instrumental detection limit of 120-850 pg. In addition, a careful evaluation of the matrix effect showed that the response of the Direct-EI interface was never affected by sample interferences. From our knowledge, the proposed method represents the first application of LC-MS in the analysis of organochlorine pesticides.  相似文献   

11.
Zhu M  Ma L  Zhang H  Humphreys WG 《Analytical chemistry》2007,79(21):8333-8341
The present study was designed to apply the mass defect filter (MDF) approach to the screening and identification of reactive metabolites using high-resolution mass spectrometry. Glutathione (GSH)-trapped reactive metabolites of acetaminophen, diclofenac, carbamazepine, clozapine, p-cresol, 4-ethylphenol, and 3-methylindole in human liver microsomes (HLM) were analyzed by HPLC coupled with Orbitrap or Fourier transform ion cyclotron resonance mass spectrometry. Through the selective removal of all ions that fall outside of the GSH adduct MDF template windows, the processed full scan MS chromatograms displayed GSH adducts as major components with no or a few interference peaks. The accurate mass LC-MS data sets were also utilized for the elimination of false positive peaks, detection of stable oxidative metabolites with other MDF templates, and determination of metabolite molecular formulas. Compared to the neutral loss scan by a triple quadrupole instrument, the MDF approach was more sensitive and selective in screening for GSH-trapped reactive metabolites in HLM and rat bile and far more effective in detecting GSH adducts that do not afford the neutral loss of 129 Da as a significant fragmentation pathway. The GSH adduct screening capability of the MDF approach, together with the utility of accurate mass MS/MS information in structural elucidation, makes high-resolution LC-MS a useful tool for analyzing reactive metabolites.  相似文献   

12.
High-performance liquid chromatography (LC) coupled to mass spectrometry (MS) is increasingly being used for urinary metabonomic studies. Most studies utilize reversed-phase separation techniques, which are not suited to retaining highly polar analytes. Metabonomic studies should encompass a representative "fingerprint" that contains the largest amount of information possible. In this work, we have analyzed human urine samples with LC-MS, comparing traditional reversed-phase separation with hydrophilic interaction chromatography (HILIC), using both positive and negative electrospray ionization modes. The resulting data were analyzed using principal components analysis and partial least-squares-discriminant analysis. Discriminant models were developed for the response variables gender, diurnal variation, and age and were evaluated using external test sets to classify their predictive ability. The developed models using both positive and negative ionization mode data for reversed-phase and HILIC separations were very comparable, indicating that HILIC is a suitable method for increasing the fingerprint coverage for LC-MS metabonomic studies.  相似文献   

13.
面向饮用水制备过程的纳滤膜分离技术   总被引:14,自引:0,他引:14  
纳滤膜分离技术在饮用水制备方面具有独特的作用,是制备优质饮用水的有效方法.依据电荷效应,纳滤膜可以降低水质硬度,去除饮用水中对人体有害的硝酸盐、砷、氟化物和重金属等无机污染物;依据筛分效应,纳滤膜可以有效地去除农药残留物、三氯甲烷及其中问体、激素以及天然有机物等有机污染物.文章详细综述了国内外纳滤膜技术在饮用水制备中应用研究的最新进展,纳滤膜对地表水或地下水中存在的各种无机、有机污染物的分离特性及饮用水制备过程中的纳滤膜污染与防治对策.  相似文献   

14.
Xie J  Zhu L  Xu X 《Analytical chemistry》2002,74(10):2352-2360
A coupled LC-MS (liquid-phase chromatography and mass spectrometry) system consisting of a combination of a column of molecularly imprinted polymer (MIP) and a MS detector was used for affinitive separation and on-line identification of the antitumor components, harmine and harmaline, from the methanol extract of Peganum nigellastrum seeds. Three molecularly imprinted polymers were synthesized with porogens bearing different hydrogen bonding capacities with harman, the structural analogue of harmaline, and harmine as the template. The affinity and selectivity of the anti-harman MIPs for the targets, harmine and harmaline, were investigated chromatographically, and the influences of the porogens and sample loads on the retention of the target compounds were also discussed. In addition, the target binding capacities of the MIPs were evaluated by frontal chromatography. When the MIPs were further used in a LC-MS system to separate the extract of herb, it was observed that imprinting with different porogens would cause the MIPs to exhibit different tendencies to adsorb the matrix components from the herb. Though the MIP prepared with a porogen of less hydrogen bonding capacity possessed higher selectivity and stronger affinity for the targets, matrix components in the herb extract interfered with the chromatographic performance more seriously when it was used as the LC solid phase in the LC-MS system for selective extraction of harmaline and harmine from the crude herb extract. Positively, the MIPs were stable and reproducible in the separation test, and the imprinting columns could efficiently separate the antitumor components from the herb extract after the sample was simply pretreated. The work in this paper would be helpful for the further extraction and identification of certain pharmacophoric compounds in herbs by a LC-MS system using MIPs as the HPLC solid phase.  相似文献   

15.
An approach for the identification of unknown selenium-containing biomolecules was developed, enabling the identification of selenodiglutathione (GS-Se-SG) and the mixed selenotrisulfide of glutathione and cysteinylglycine (GS-Se-SCG) in aqueous yeast extracts. The method consists of two-dimensional liquid chromatography, inductively coupled plasma mass spectrometry (ICPMS) and nanoelectrospray tandem mass spectrometry. Analytes were separated by size-exclusion chromatography followed by preconcentration and separation on a porous graphitic carbon HPLC column. The HPLC effluent was monitored for selenium by ICPMS, and two selenium-containing fractions were isolated and analyzed by nanoelectrospray MS. The nanoelectrospray technique has a low sample consumption of approximately 80 nL/min, enabling a preconcentration of the sample to a few microliters. Mass spectra of the two fractions showed the characteristic Se isotopic pattern centered at m/z 693.1 and 564.0 for the [M + H]+ 80Se ions. MS/MS spectra of adjacent parent ions confirmed the presence of Se. The two selenium species were identified as GS-Se-SG and GS-Se-SCG by collision induced dissociation (CID). The accurately measured masses of the most abundant 691 and 693 u parent ions are in good agreement (differences = 3 ppm) with the theoretical masses. To our knowledge, this is the first identification of GS-Se-SG and GS-Se-SCG in biological matrixes by MS/MS.  相似文献   

16.
A rapid (25 min) and facile method was developed for the isolation and identification of the enterohemorrhagic Escherichia coli (serotype O157:H7) in ground beef. The isolation method employed microscopic magnetic beads coated with antibodies covalently bonded to the surface that were specific to antigens of serotype O157. This selective preconcentration step was necessary because direct matrix-assisted laser desorption/ionization (MALDI) MS analysis of bacteria was not amenable, serving to isolate the bacteria from meat components and other nontarget bacteria. The immunomagnetic separation increased the sensitivity of the method and permitted the detection of bacteria in meat. MALDI time-of-flight MS furnished bacterial mass spectra that were useful for organism identification. Molecular weight database searches using the Expert Protein Analysis System proved useful for confirmation of the organism's identity. Bacterial biomarkers from direct MALDI analysis of pure bacterial suspensions were consistently present in bacterial suspensions of buffer/tryptic soy broth (positive controls) and meat extract samples. The detection limits were 2 x 10(6) cells/mL for the experimental approach used herein. Cross-reactivity studies performed on three nontarget bacterial strains revealed that the immunomagnetic beads are specific only to E. coli strain serotype O157:H7, and there is no cross-reactivity with the other relatively innocuous strains studied.  相似文献   

17.
Precise profiling of polar lipids including gangliosides and sulfatides is a necessary step in understanding the diverse physiological role of these lipids. We have established an efficient method for the profiling of polar lipids using reversed-phase nano high-performance liquid chromatography microfluidic chip quadrupole time-of-flight mass spectrometry (nano-HPLC-chip Q-TOF/MS). A microfluidic chip design provides improved chromatographic performance, efficient separation, and stable nanospray while the advanced high-resolution mass spectrometer allowed for the identification of complex isobaric polar lipids such as NeuAc- and NeuGc-containing gangliosides. Lipid classes were identified based on the characteristic fragmentation product ions generated during data-dependent tandem mass spectrometry (MS/MS) experiments. Each class was monitored by a postprocessing precursor ion scan. Relatively simple quantitation and identification of intact ions was possible due to the reproducible retention times provided by the nano-HPLC chip. The method described in this paper was used to profile polar lipids from mouse brain, which was found to contain 17 gangliosides and 13 sulfatides. Types and linkages of the monosaccharides and their acetyl modifications were identified by low-energy collision-induced dissociation (CID) (40 V), and the type of sphingosine base was identified by higher energy CID (80 V). Accurate mass measurements and chromatography unveiled the degree of unsaturation and hydroxylation in the ceramide lipid tails.  相似文献   

18.
NMR spectroscopy is widely used in the pharmaceutical industry for the structure elucidation of pharmaceutical impurities, especially when coupled to a separation method, such as HPLC. However, NMR has relatively poor sensitivity compared with other techniques such as mass spectrometry, limiting its applicability in impurity analyses. This limitation is addressed here through the on-line coupling of microcoil NMR with capillary isotachophoresis (cITP), a separation method that can concentrate dilute components by 2-3 orders of magnitude. With this approach, 1H NMR spectra can be acquired for microgram (nanomole) quantities of trace impurities in a complex sample matrix. cITP-NMR was used in this work to isolate and detect 4-aminophenol (PAP) in an acetaminophen sample spiked at the 0.1% level, with no interference from the parent compound. Analysis of an acetaminophen thermal degradation sample revealed resonances of several degradation products in addition to PAP, confirming the effectiveness of on-line cITP-NMR for trace analyses of pharmaceutical formulations. Subsequent LC-MS/MS analysis provided complementary information for the structure elucidation of the unknown degradation products, which were dimers formed during the degradation process.  相似文献   

19.
Li D  Li DW  Fossey JS  Long YT 《Analytical chemistry》2010,82(22):9299-9305
A portable surface-enhanced Raman scattering (SERS) sensor is developed and applied to simultaneous detection of aniline and phenol derivatives in a label-free way with an electrostatic preconcentration technique to amplify the signals. A SERS-active substrate, silver-electrodeposited screen-printed electrodes (Ag-SPEs), is used for qualification and quantification of polar organic pollutants. Observation of SERS spectra at different potentials indicates that polar pollutants are selectively adsorbed on the Ag-SPEs at a given potential, suggesting that Ag-SPEs could selectively attract polar pollutants to an oppositely charged electrode at different potentials. Optimum SERS-active substrate was obtained when a potential of -0.15 V vs Ag/AgCl was applied on the SPEs in 0.1 M AgNO(3) solution for 10 min. Moreover, the effects of experimental variables such as the electrodeposition time and potential of Ag and preconcentration time of polar molecules on the SERS signals are presented. Under optimum conditions and with a 785 nm laser, the method is effective over a wide range of concentration (1 nM to 1 μM) for aniline and phenol derivatives. The novel method described herein presents a new detection regime for environmental pollutant analysis and also demonstrates simultaneous multiplexed detection of polar organic pollutants using convenient Ag-SPEs.  相似文献   

20.
Compound-specific carbon isotope analysis (CSIA) has become an important tool in biological, archeological, and geological studies as well as in forensics, food sciences, and organic chemistry. If sensitivity could be enhanced, CSIA would further have an improved potential for environmental applications such as, for example, in situ remediation studies to assess contaminated environments, identification of pollutant degradation pathways and kinetics, distinction between degradation/formation mechanisms, or, verification of contaminant sources. With this goal in mind, we have developed methods to determine delta13C values of commonly reported groundwater contaminants in low-microgram per liter concentrations. Several injection and preconcentration techniques were evaluated for this purpose, i.e., on-column injection, split/ splitless injection, solid-phase microextraction (SPME), and purge and trap (P&T) in combination with gas chromatography-isotope ratio mass spectrometry. The delta13C values of the target compounds were determined by liquid injections of the analytes dissolved in diethyl ether or, in the case of P&T and SPME, by extraction from water spiked with the analytes. P&T extraction was the most efficient preconcentration technique reaching method detection limits (MDLs) from 0.25 to 5.0 microg/L. These are the lowest MDLs reported so far for continuous-flow isotope ratio determinations, using a commercially available and fully automated system. Isotopic fractionation resulting from preconcentration and injection was investigated and quantified for the priority groundwater pollutants methyl tert-butyl ether (MTBE), chloroform, tetrachloromethane, chlorinated ethylenes, benzene, and toluene. The isotopic fractionations caused by the extraction techniques were small but highly reproducible and could therefore be corrected for. P&T was characterized by a higher reproducibility and smaller isotopic fractionations than SPME. Among the liquid injection techniques, cold on-column injection resulted in slightly better precision compared to split/splitless injection. However, the MDLs determined for liquid injections were 4-6 orders of magnitude higher (i.e., 9.5-2800 mg/L) than for P&T and SPME. Since both of the latter methods are solventless, a better chromatographic resolution was obtained than for the liquid injection techniques. The P&T and SPME methods described here are also applicable for CSIA of D/H ratios, which require 10-20 times higher analyte concentrations than 13C/12C analysis. Finally, the applicability of the described methods is demonstrated for pollutant concentrations of only 5-60 microg/L in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号