首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以新疆阿尔泰山南麓克兰河流域典型区为研究区,利用GF-3全极化数据进行积雪探测,提出了一种基于特征优选的积雪识别方法。首先通过极化分解获取了GF-3数据的22个极化特征,并利用随机森林方法计算各特征的重要性,构建特征优选规则生成最优特征集,然后基于最优特征集对积雪进行识别。分析特征的重要性发现,同极化后向散射系数对积雪识别的贡献比交叉极化的贡献大,面散射和体散射对积雪识别的贡献比二面角散射贡献大。将该方法与最大似然法、支持向量机、BP神经网络3种分类器的对比发现,使用最优特征集并且利用随机森林方法的积雪识别精度最高(F指数为0.86,总体精度为0.79)。结果表明:基于特征优选进行积雪识别,不仅使得积雪识别效率得到提高,而且保持精度不变甚至有所增加,证明了该方法在积雪识别中的有效性。  相似文献   

2.
通过对东北积雪实验观测数据和HUT(the Helsinki University of Technology)积雪-冰-水层模型模拟数据的比较分析,描述了积雪-冰-水系统的发射率特征.并于2010年1月21日~22日在吉林省松原市的松花江进行了积雪辐射计观测试验,通过对湖冰上的积雪的亮温观测和HUT模型模拟的亮温比较...  相似文献   

3.
祁连山区积雪类型丰富、判识复杂,是中国积雪研究的典型区域。因此,精确地监测祁连山区积雪面积变化及其时空演变,对祁连山区生态环境和社会经济发展等具有重要意义。FY-3C MULSS利用多阈值积雪指数模型提供全球日积雪覆盖产品,FY-4A AGRI传感器每15~60 min提供一景覆盖全球的多光谱影像。基于FY-4A AGRI高时间分辨率的特征,构建适合于FY-4A号数据的动态多阈值多时相云隙间积雪识别方法,很大程度上减小了云对光学数据识别积雪造成的影响,并结合FY-3C MULSS积雪覆盖日产品较高空间分辨率的优势,融合得到去除云后的FY3C4积雪覆盖数据。利用Landsat 8 OLI卫星数据对融合后的积雪数据进行对比验证,结果表明融合FY-3C和FY-4A后的数据能更好地判识祁连山区的积雪覆盖情况。以MODIS MOD10A2积雪产品为真实值,随机检验了2018年3月~2019年3月融合后数据的积雪判识精度,发现无云情况下方法的总体精度可达到85.25%。进一步研究发现祁连山区积雪面积在海拔、气候和坡向等因素的影响下时空分布极不均匀,总体呈现出冬春季节大于夏秋季节,以及东部积雪面积大于西部积雪面积的特征。  相似文献   

4.
受复杂地形和遥感数据低分辨率的影响,传统的二值化积雪遥感产品在山区和林区的积雪覆盖度计算中存在严重误算和漏算的问题,从而导致积雪覆盖度估算精度低。基于风云四号A星多通道辐射扫描计(AGRI)新疆地区的遥感影像数据,提出一种多尺度特征融合网络的积雪覆盖度估算方法。通过深度残差网络和特征金字塔模式对卷积层各个阶段的特征信息进行重构,融合深层和浅层特征的多重语义信息,同时结合AGRI数据高时间分辨率的特性,拟合光谱信息和地理因素间的非线性关系,从而提高数据源和特征信息的整体利用率。实验结果表明,相比MOD10_FSC、BP-ANN_FSC和ResNet_FSC方法,该方法在A1~A4样本区中相关系数均值和解释回归模型的方差得分均值最高可提高8和6个百分点,且其均方误差均值仅为0.1,能够获得较高精度的积雪覆盖度估算结果。  相似文献   

5.
基于SVM的POL-SAR图像分类研究   总被引:2,自引:1,他引:1  
提出了一种将物理散射机理、纹理信息和SVM结合起来用于POL-SAR图像分类的方法。实验数据选取德国Oberpfaffenhofen实验区域(DE)的DLR ESAR L波段全极化数据,实验区域包括自然植被,如森林、田地和人造目标如建筑、机场跑道等。首先利用OEC分解得到了散射特征,然后提取HH和HV通道图像的纹理特征,并用SVM进行特征选择及分类。然后在上述特征中加入Freeman分解的散射特征重复试验,取得了较好的结果。试验证明了将散射特征和纹理特征结合起来对地物进行分类是有效的,同时也证明了用SVM进行特征选择的有效性。  相似文献   

6.
合成孔径雷达(SAR)不仅具有穿云透雾,全天候观测地表的能力,而且可穿透地表覆盖一定深度获取地表覆盖物内部特征信息。利用2011年10景ENVISAT\|ASAR可变极化模式精细图像(ASA_APP_1P)数据,分析比较了黑河上游祁连山冰沟流域不同时段积雪SAR后向散射特性,应用同期的MODIS积雪面积产品确定研究区积雪的累积和消融背景信息。研究表明:由于融雪期积雪含水量上升,SAR图像后向散射系数相比干雪或无雪图像明显降低,经过分析认为广泛应用的-3 dB阈值会明显低估湿雪覆盖范围,-2 dB阈值更适合该地区湿雪面积参数提取。山区积雪融化过程中低海拔区域积雪融化而高海拔山区积雪仍可能为干雪,在提取湿雪像元的基础上,根据Sigmoid函数阈值获取的像元湿雪百分比及DEM信息来提取干雪像元,最终获取整个流域积雪面积信息。通过与Landsat ETM+图像积雪面积分类结果进行比较,总体精度达到78%。积雪累积和消融背景信息的分析表明:误差主要源于流域东北部与西北部低海拔区域积雪快速消融。  相似文献   

7.
森林覆盖区积雪的提取精度很低,由于植被冠层的遮挡,冠层下的积雪很难被提取出来。基于Landsat 8OLI数据,针对玛纳斯河流域下游有大面积森林覆盖的特点,通过传统的积雪指数法,结合NDVI数据的积雪指数法和面向对象图像特征法分别提取积雪面积。结果表明:1传统的NDSI和S3积雪指数法无法较好地提取出森林覆盖下的积雪,提取精度分别为85.23%和87.54%。这两种方法适用于空间尺度较大、植被覆盖面积较大的区域,并不适合所选研究区;2结合NDVI数据后的NDSI、S3积雪指数模型能大大提高森林覆盖下的积雪面积,提取精度分别达到91.47%和90.60%。在影像空间分辨率较高,流域尺度较小,林区覆盖较多的情况下可采用此方法提取积雪;3随着海拔的升高,地形阴影影响逐渐增大,NDVI辅助积雪指数方法提取林区覆盖下积雪面积逐渐减小。因此采用光谱、纹理和空间信息结合的面向对象图像特征方法提取积雪,能够较好地识别出受地形影响下的雪像元,精度达到89.75%,可以满足实际应用的需求。  相似文献   

8.
积雪深度不仅用于研究地表辐射平衡,还可以研究积雪的水文效应,是天气和水文模型运行的必要参数,同时,积雪深度监测在融雪径流预报、水资源管理以及洪水控制方面都具有重要作用。我国现有积雪深度反演算法所依据的站点数据主要分布在我国中部、东部、南部,而在西北的新疆地区站点数据相对较少,因此造成了现有算法在新疆地区的雪深反演精度较差。选择新疆地区作为研究区,以FY3B-MWRI为数据源,根据该地区的地形特征和地面土地覆盖类型特征,利用回归分析方法,研究了该区域内林地、农田和草地3种土地覆盖类型的积雪深度反演算法,并结合地面实测积雪深度数据,对算法精度进行验证。结果显示,林地、农田和草地3种土地覆盖类型的雪深反演结果的R2与RMSE分别为0.758,2.58、0.729,3.21、0.854,5.70,表明该算法对新疆地区积雪深度反演得到了较高的反演精度。  相似文献   

9.
利用最新发布的中分辨率成像光谱仪MODIS全球积雪8天合成数据MOD10C2和月合成数据MOD10CM,计算积雪面积及季累积积雪周数,分析北半球2001年~2011年积雪面积变化及时空分布特征。结果表明:北半球21世纪最初11年的积雪保持了20世纪的变化趋势,即积雪面积在秋夏两季减少而冬季增加,但在局部地区表现出新的变化特征,即积雪面积变化的异常区与1988年~1998年的有所差异:北美中西部和蒙古高原在两个时间段均是变化异常区,而青藏高原和欧洲阿尔卑斯山脉积雪在2001年~2011年变化不明显,哈萨克斯坦南部的图兰平原和里海北海岸地区是21世纪一个新的积雪变化异常区。  相似文献   

10.
高时间分辨率的积雪判识对于新疆牧区农牧业发展和雪灾预警具有重要作用,针对已有积雪产品易受复杂地形地貌,下垫面类型以及云遮蔽的影响,导致积雪判识精度降低的问题,提出一种利用深度学习方法对风云4号A星多通道辐射扫描计(AGRI)数据与地理信息数据进行多特征时序融合的积雪判识方法:以多时相FY-4A/AGRI多光谱遥感数据,以及高程、坡向、坡度和地表覆盖类型等地形地貌信息作为模型输入,以Landsat 8 OLI提取的高空间分辨率积雪覆盖图作为“真值”标签,构建并训练基于卷积神经网络的积雪判识模型,从而有效区分新疆复杂地形与下垫面地区的云、雪以及无雪地表,最终得到逐小时积雪覆盖范围产品。经数据集和2019年地面气象站实测雪盖验证,该方法精度高于国际主流MODIS逐日积雪产品MOD10A1和MYD10A1,显著降低云雪误判率。  相似文献   

11.
积雪面积比例(Fractional Snow Cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area, SCA)与像元空间范围的比值,可为区域气候模拟、水文模型等提供积雪分布的定量信息。MODIS FSC产品是根据经验模型计算得到,并没有考虑地形、植被和地表温度等环境因素的影响,在青藏高原的验证精度低。针对此问题,考虑青藏高原地区环境因素(地形、植被、地表温度)对FSC制备的影响,基于多元自适应回归模型(Multivariate Adaptive Regression Splines, MARS)和线性回归模型分别建立FSC制备的非参数回归模型和经验回归模型。用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集。选取一部分参考数据集作为模型的训练数据集,另一部分作为模型的检验数据集。研究结果表明:MARS方法估计FSC的精度明显高于线性回归模型和原有的MODIS FSC制备方法。MARS的总体R、RMSE、MAE分别为0.791、0.103、0.058。在线性回归模型中精度最高的总体R、RMSE、MAE分别为0.647、0.128、0.072。MODIS 原有FSC制图方法的总体R、RMSE、MAE分别为0.595、0.221、0.170。考虑了环境信息的MARS方法更加适用于青藏高原地区FSC制备。本研究为制备青藏高原地区更高精度的FSC数据提供了新思路。  相似文献   

12.
被动微波遥感在青藏高原积雪业务监测中的初步应用   总被引:14,自引:2,他引:12  
积雪范围、积雪深度和雪水当量等参数的遥感监测与反演对气候模式的建立以及积雪灾害的评估具有重要意义。被动微波遥感在这些参数的反演方面具有明显优势,但目前尚未应用到青藏高原地区的积雪遥感业务监测上来。2001年10月至2002年4月,利用SSM/I数据对青藏高原地区的积雪范围和积雪深度进行了实时监测,为西藏、青海遥感应用部门提供逐日的雪深分布图。对这次监测的总效果进行了分析和评价,并对发生在青海省内一次较大的降雪过程进行了遥感分析,结果表明:SSM/I反演的积雪范围变化趋势与MODIS结果总体上较为一致;SSM/I的雪深监测结果为当地遥感部门对大于10 cm的雪深做出正确判断提供了重要信息,是对雪灾定位的重要信息源。  相似文献   

13.
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow/ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM=(TM3-TM5)/(TM3+TM5); for VGT data, NDSII is calculated as NDSIIVGT=(B2-MIR)/(B2+MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.  相似文献   

14.
青藏高原MODIS积雪面积比例产品的精度验证与去云研究   总被引:1,自引:0,他引:1  
MODIS积雪产品的精度验证和去云处理是积雪监测研究的基础。首先利用青藏高原典型地区的ETM+数据作为“真值”影像,对MODIS积雪面积比例(FSC)产品在无云条件下的精度进行验证,发展了一个基于三次样条函数插值的去云算法,并采用基于“云假设”的检验和地面站积雪覆盖日数(SCD)检验两种方法对去云算法的精度进行了分析评价。结果表明:MODIS FSC产品在青藏高原地区具有较高的精度,与FSC“真值”相比,其平均绝对误差、均方根误差以及相关系数分别为0.098、0.156和0.916;去云算法能够有效地获取云遮蔽像元的FSC信息,平均绝对误差为0.092,用新生成的无云MODIS FSC产品计算得到的SCD与地面观测值具有较高的一致性(87.03%),平均绝对误差为3.82 d。  相似文献   

15.
肖林  车涛 《遥感技术与应用》2015,30(6):1066-1075
积雪具有很高的反照率,能反射回绝大部分的太阳短波辐射;同时,积雪是热的不良导体,其热阻隔性会抑制地表的长波辐射。因此,积雪的积累和消融会强烈地改变大气层顶的辐射平衡,进而对气候产生反馈。采用ERA-Interim再分析资料和MODIS去云积雪产品,通过改进的偏辐射扰动思想,对青藏高原地区2001~2010年积雪影响下大气层顶的辐射能量收支状况进行模拟,计算对应的积雪辐射强迫,并在此基础上估算积雪反馈。结果表明:研究区99.5%以上地区的大气层顶辐射平衡为负,即积雪对气候存在正的辐射强迫,年平均辐射强迫为3.97 W·m-2。时空分布特征表明,积雪辐射强迫的年际差异不大,但空间差异很大,其空间分布与积雪覆盖率有很强的正相关关系,在绝大多数情况下,短波反照率辐射强迫对积雪辐射强迫起着决定性作用,且青藏高原的积雪反馈强度约为9.35 W·m-2·℃-1。  相似文献   

16.
气候变化对青藏高原湖泊水面面积会产生很大的影响,雪冰覆盖作为气候变化的一个重要因素,也对青藏高原湖泊水面面积有一定的影响。利用遥感影像提取2009—2017年可可西里地区库塞湖及周边四湖(简称为四湖)的年水面面积,同时,利用2005—2016年的MODIS积雪产品,提取四湖集水区雪冰覆盖率,结合同期五道梁气象站点的逐月平均气温数据和降水量,对四湖水面面积变化与集水区雪冰覆盖变化规律及其与五道梁站气温与降水量之间的关系进行探讨。分析表明:1)卓乃湖2011年9月溃决后,4个湖泊的水面面积都发生较大的改变;2)2005—2014年期间,四湖集水区雪冰覆盖率总体呈小幅度增加趋势;3)卓乃湖溃决后,库塞湖及卓乃湖的水面面积与五道梁站年均气温的相关性显著提高,而库塞湖及卓乃湖的水面面积与四湖集水区雪冰覆盖率的相关性显著降低。  相似文献   

17.
以MODIS雪盖、风云静止卫星降水、GLDAS气温等多源数据,作为传统SRM模型的输入参数,构建多源遥感驱动的SRM融雪径流模型,并在缺资料地区——青藏高原的年楚河流域进行融雪过程的径流模拟。研究表明融雪后期的瞬时降雪很大程度上影响了插值后积雪覆盖率的精度,在插值的时候考虑降水和气温,排除瞬时积雪干扰,改进线性插值获得每天的积雪覆盖率,可以提高模型模拟精度;遥感驱动的SRM模型在缺资料地区年楚河适用性较好,Nash-Sutcliffe系数(NSE)达到0.681,体积差(Dv)为-0.17%,均方根误差(RMSE)为9.678,模型模拟的精度较高。研究结果可为高寒地区生态水文模型研究提供重要参考,同时可为SRM模型在其他流域尤其是缺资料地区融雪径流计算中的应用提供有效支撑。  相似文献   

18.
We investigated the single scattering optical properties of snow for different ice particle shapes and degrees of microscopic scale roughness. These optical properties were implemented and tested in a coupled atmosphere-snow radiative transfer model. The modeled surface spectral albedo and radiance distribution were compared with surface measurements. The results show that the reflected radiance and irradiance over snow are sensitive to the snow grain size and its vertical profile. When inhomogeneity of the particle size distribution in the vertical is taken into account, the measured spectral albedo can be matched, regardless of the particle shapes. But this is not true for the modeled radiance distribution, which depends a lot on the particle shape. The usual “equivalent spheres” assumption significantly overestimates forward reflected radiances, and underestimates backscattering radiances, around the principal plane. On average, the aggregate shape assumption has the best agreement with the measured radiances to a mean bias within 2%.The snow optical properties with the aggregate assumption were applied to the retrieval of snow grain size over the Antarctic plateau. The retrieved grain sizes of the top layer showed similar and large seasonal variation in all years, but only small year to year variation. Using the retrieved snow grain sizes, the modeled spectral and broadband radiances showed good agreements with MODIS and CERES measurements over the Antarctic plateau. Except for the MODIS 2.13 μm channel, the mean relative model-observation differences are within few percent. The modeled MODIS radiances using measured surface reflectance at Dome C also showed good agreement in visible channels, where radiation is not sensitive to snow grain size and the measured surface bidirectional reflectance is applicable over the Antarctic plateau. But modeled radiances using local, surface-measured reflectance in the near infrared yielded large errors because of the high sensitivity to the snow grain size, which varies spatially and temporally. The CERES broadband shortwave radiance is moderately sensitive to the snow grain size, comparable to the MODIS 0.86 μm channel. The variation of broadband snow reflectance due to the seasonal variation in snow grain size is about 5% in a year over the Antarctic plateau. CERES broadband radiances simulated with grain sizes retrieved using MODIS are about 2% larger than those observed.  相似文献   

19.
Snow cover and glaciers are sensitive indicators of the environment. The vast spatial coverage of remote sensing data, coupled with the tough conditions in areas of interest has made remote sensing a particularly useful tool in the field of glaciology. Compared to optical images, synthetic aperture radar (SAR) data are hardly influenced by clouds. This is important because glacial areas are usually under cloud cover.The Dongkemadi glacier in the Qinghai-Tibetan plateau was selected as the study area for this paper. We use polarimetric SAR (PolSAR) image for classification on and around the glacier. The contrast between ice and wet snow is remarkable, but it is difficult to distinguish the ice from the ground on SAR images due to similar backscatter characteristics in former research. In our study, we found that this distinction can be achieved by target decomposition. Support Vector Machines (SVMs) are performed to classify the glacier areas using the selected features. The glacial areas are classified into six parts: wet snow, ice, river outwash, soil land, rocky land and others. The PolSAR-Target decomposition-SVMs (PTS) method is proven to be efficient, with an overall classification accuracy of 91.1% and a kappa coefficient of 0.875. Moreover, 86.63% of the bare ice and 96.76% of the wet snow are correctly classified. The classification map acquired using the PTS method also helps to determine the snow line, which is an important concept in glaciology.  相似文献   

20.
Land-surface water is an important factor influencing the regional environment and climate and is a key factor in the Tibetan Plateau, which is one of the most sensitive regions to global changes. Because of the high elevation, complex topography, and erratic weather of the Tibetan Plateau, direct measurement of the area of every lake is largely unfeasible. Moreover, complex natural geographic conditions increase the difficulty of image processing and information extraction with remote sensing because they enhance the uncertainty of quantitative data retrieved with satellites. Methods based on spectral features do not generate the expected results of lake area over the Tibetan Plateau due to a lack of distinction between water and other land objects, especially snow, vegetation, and low cloud cover. Therefore, a new method to extract lake area from satellite images in the Tibetan Plateau is needed. In this article, an automatic method was proposed to evaluate lake area during the wet season (from 1 September to 31 October) on the Tibetan Plateau with multi-day Advanced Very High Resolution Radiometer (AVHRR) remote-sensing images on board the Meteorological Operational satellite-A (MetOp-A) satellite. The method considers both spectral and textural features of lakes and does not need a cloud mask as an input. In addition, the Mixture Tuned Matched Filtering (MTMF) algorithm was applied to decompose the mixed pixels to better identify lakes and estimate the lake area. Based on daily lake identifications, the wet season’s lake data were composited with the maximum value composition (MVC) method to determine the lake area. A comparison of our work with the manually interpreted results from Landsat Thematic Mapper (TM) images and observational reports demonstrates the accuracy and reliability of our approach. However, certain factors, i.e. the sensor zenith angle of the polar-orbit satellite and the topography, can affect the lake area extracted from the remote-sensing images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号