首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
采用失重法研究了复配葡萄糖酸钠、苯甲酸钠与硫酸锌、硝酸镧可溶性盐在pH值为6.5的3.5%NaCl溶液中对Z30铸铁片的缓蚀效应.结果表明当葡萄糖酸钠、苯甲酸钠的浓度均为250 mg/L,Zn2+浓度分别为2 mmol/L与3 mmol/L时,缓蚀率高达92.5%与95.3%,而加入La3+浓度为0.5 mmol/L时,缓蚀率可达86.7%.  相似文献   

2.
由葡萄糖和十四烷基二甲基叔胺合成的糖基季铵盐双子表面活性剂(C14-GDQ)作为缓蚀剂,用静态失重法研究了该表面活性剂在1 mol/L盐酸溶液中对Q235钢的缓蚀作用。结果表明,在1 mol/L盐酸溶液中C14-GDQ对Q235钢具有良好的缓蚀作用,缓蚀率随缓蚀剂浓度的增加而增大,当缓蚀剂质量浓度达到0.1mmol/L时缓蚀率趋于稳定。通过吸附理论、动力学和热力学公式得到相应的参数,并讨论了缓蚀作用机理。  相似文献   

3.
采用自制的季铵盐双子表面活性剂1,6-二(癸烷基吗啉)己烷(HDMB)作为缓蚀剂,用失重及极化曲线研究了该表面活性剂在1 mol/L盐酸溶液中对Q235钢的缓蚀效果.失重结果表明:在1 mol/L盐酸溶液中HDMB对Q235钢具有良好的缓蚀作用,缓蚀率随缓蚀剂浓度的增加而增大,当浓度达到0.1 mmol/L时,缓蚀率趋于稳定.通过吸附理论、动力学和热力学公式得到相应的参数,并讨论了缓蚀作用机理;极化曲线法表明:HDMB为混合抑制型缓蚀剂.  相似文献   

4.
研究了Ce4+在以2-(二乙基己基)磷酸(P204)为流动载体,煤油和P204的混合溶液作为膜溶液,膜溶液和解析剂H2SO4溶液组成更新相的反萃更新中空纤维液膜(SRHFLM)中的提取行为;考察了料液酸度、更新相H2SO4浓度、膜溶液与H2SO4溶液体积比、不同载体浓度对Ce4+提取的影响,得出了以下Ce4+最优提取条件:更新相H2SO4溶液浓度2.50mol/L,膜溶液与H2SO4溶液体积比2:1,载体浓度控制在0.200mol/L,料液相酸度为0.05mol/L。在最优分离条件下,当Ce4+的初始浓度为1.00?10-4mol/L时,Ce4+在45min时提取率达到92.2%。最后提出了Ce4+在SRHFLM中的学渗透系数动力学模型。  相似文献   

5.
合成了一种席夫碱:4-氯-N-[(吡啶-4基)-亚甲基]苯胺(CNP),并采用失重法、电化学阻抗谱和动电位极化曲线等,研究了CNP对N80钢在1mol/L HCl溶液中的缓蚀性能。结果表明,在1mol/L HCl溶液中,当缓蚀剂摩尔浓度为1.0mmol/L时,缓蚀率达到86.17%。其在N80钢表面吸附满足Langmuir吸附等温式,是一种混合型缓蚀剂。  相似文献   

6.
采用静态失重法和电化学技术等研究了2-氨基苯并咪唑(ABT)及2-正己氨基-4-(3′-N,N-二甲氨基-丙基)氨基-6-(苯并咪唑-2-基)氨基-1,3,5-均三嗪(BACT)在0.5mol/L硫酸溶液中对45号碳钢的缓蚀性能。结果表明:在0.5mol/L硫酸溶液中,BACT比ABT具有更好的缓蚀作用。当缓蚀剂浓度为0.20mmol/L时,BACT对碳钢的缓蚀率可达86.07%,而ABT对碳钢的缓蚀率仅为42.13%。通过表面张力仪研究了BACT和ABT在0.5mol/L硫酸溶液中的表面活性。通过量子化学计算和分子动力学模拟方法研究了缓蚀剂在金属Fe界面上的吸附作用。结果表明:BACT的吸附作用明显高于ABT的;BACT分子结构中亲水基、疏水基和三嗪环的引入提高了其在碳钢表面的吸附成膜作用,从而提高了缓蚀剂的缓蚀性能。  相似文献   

7.
以低冰镍为研究对象,采用FeCl_3-HCl溶液体系高效浸提目标金属Ni、Cu、Co,系统地研究FeCl_3溶液的浓度、盐酸溶液的浓度、浸出温度和时间对Ni、Cu、Co浸出率的影响,并对Ni的浸出动力学进行探讨。结果表明:在最优浸出条件下,即FeCl_3溶液的浓度为1.0 mol/L、盐酸溶液的浓度为0.5 mol/L、浸出温度90℃、浸出时间7 h时,Ni、Cu、Co浸出率分别达到98.4%、98.9%和97.3%。当温度为60~90℃时,Ni的浸出反应符合未反应核收缩模型,代入动力学方程分析后发现,Ni浸出反应过程是界面化学反应控速,表观活化能为38.4kJ/mol。  相似文献   

8.
合成了一种吡啶席夫碱衍生物,2-吡啶甲醛缩4-苯基氨基硫脲席夫碱(PCPTC),并采用失重法、电化学阻抗谱法和极化曲线法研究了PCPTC对Q235钢在1 mol/L HCl溶液的缓蚀作用。结果表明:PCPTC对Q235钢在1mol/L HCl溶液中具有优良的缓蚀效果,是一种混合型缓蚀剂;当缓蚀剂浓度达到0.5 mmol/L时,缓蚀率达到93.6%;PCPTC在Q235钢表面的吸附符合Langmuir吸附等温式;扫描电镜(SEM)观察表明,PCPTC可以有效保护Q235钢。  相似文献   

9.
目的研究4-苯基氨基硫脲(4-PTC)对Q235钢在1mol/L HCl中的缓蚀作用。方法采用异硫氰酸苯酯和水合肼为原料,合成4-PTC。采用熔点分析、核磁共振氢谱和红外光谱等方法确定合成物质为目标产物4-苯基氨基硫脲。采用静态失重法、电化学极化曲线法、电化学阻抗谱法和扫描电子显微镜法,分析研究4-PTC的缓蚀性能。结果静态失重实验表明,当4-PTC浓度增加到1.0 mmol/L时,缓蚀效率达到85.9%,在Q235钢表面吸附符合Langmuir吸附等温式,形成单分子吸附层。计算得到吉布斯自由能为?35.60 k J/mol,说明缓蚀剂分子在Q235钢表面吸附同时存在物理吸附和化学吸附过程。动电位极化曲线表明,该缓蚀剂是以阴极型为主的混合型缓蚀剂,当4-PTC浓度增加到1.0 mmol/L时,缓蚀效率达到83.6%。电化学阻抗谱表明,随4-PTC浓度的增加,电荷转移电阻值增大,双电层电容值减小,金属腐蚀速率降低,缓蚀作用增强。当4-PTC浓度增加到1.0 mmol/L时,缓蚀效率达到84.7%。扫描电子显微镜表明,缓蚀剂分子能有效保护金属表面,抑制腐蚀。结论在盐酸介质中,4-PTC对Q235钢具有优良的缓蚀性能。  相似文献   

10.
采用扫描电化学显微镜(SECM),面扫描与线性扫描技术相结合,研究了HR-2不锈钢在0.5 mol/L H2SO4+0.1 mol/L NaCl溶液中的腐蚀行为。结果表明:HR-2不锈钢在该溶液中的开路电位、活化电位及钝化区电位分别为:-0.4 V、-0.23 V、0.0 V ~ 0.8 V,基底保持开路电位和活化电位时,探头最大电流为9.5 nA和35.2 nA,基底形成钝化膜后探头电流明显减小;当探头电位为-0.2 V时能有效氧化基底产生的H2,0.6 V时能有效氧化基底反应产生的Fe2+,探头-基底间距为20 μm时,可较好地表征基底活性;当溶液中硫脲浓度为0.75 mmol/L时,有最佳的缓蚀作用。  相似文献   

11.
By solid-state synthesis method, Ho3+/Yb3+ co-doped CeO2-ZrO2 nano-powders have been prepared. The concentration of Ce4+ ions has greater effect to the oxygen lattice structure. When the concentration of Ce4+ ions is 30 mol%, the oxygen lattice is a tetrahedral space group and the luminescence intensity of the sample is strongest. The results show that the lattice structure can be changed by inducting the Ce4+ ions into Ho3+/Yb3+ co-doped ZrO2. And the emission character can be improved.  相似文献   

12.
The luminescence of SrCaSiO4:Eu2+, Ce3+ is studied as a potential ultraviolet light-emitting diodes (UV-LEDs) phosphor that is capable of converting the ultraviolet emission of a UV-LED into green light with good luminosity. There are two emissions peaks peaking at 420 and 500 nm, respectively. The two emissions come from d-f transitions of Ce3+ and Eu2+, respectively. Effective energy transfer occurs in Ce3+/Eu2+ co-doped SrCaSiO4 due to a part of spectral overlap between the emission of Ce3+ and excitation of Eu2+. Co-doping of Ce3+ enhances the emission intensity of Eu2+ greatly by transferring its excitation energy to Eu2+. The Ce3+/Eu2+ energy transfer, thoroughly investigated by the diffuse reflection emission and excitation spectra, photoluminescence decay curves, is demonstrated to be in the mechanism of electric dipole-dipole interaction.  相似文献   

13.
The transmission and photoluminescence (PL) properties of Ce3+ or Tb3+ doped and Tb3+/Ce3+ codoped oxyfluoride aluminosilicate glasses were reported. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were applied to confirm the structure and thermal stability of samples. PL spectra revealed a bright and broad violet-blue emission derived from Ce3+ [5d (2D) → 2F5/2,7/2] and an intense sharp green emission (543 nm) derived from Tb3+ (5D4 → 7F5) in the Ce3+ and Tb3+ doped glasses, respectively. Concentration quenching is not observed even the mole ratio of Tb3+ is up to 8% in Tb3+ doped glass. This indicates that the as-made host glass provides a good distribution of Tb3+ activators in glass matrix. For Tb3+/Ce3+ codoped glasses, a strong green emission corresponding to Tb3+ (5D4 → 7F5) and an energy transfer phenomenon from Ce3+ to Tb3+ were observed upon excitation with an UV wavelength (289 nm). It was also observed that their PL intensity depends on the concentration of Ce3+ when the concentration of Tb3+ is fixed. The mechanism involved in the energy transfer between Ce3+ and Tb3+ was explained with an energy level diagram.  相似文献   

14.
The CaSc2O4:Ce3+ nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 °C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc2O4:Ce3+ nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 °C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 °C. The CaSc2O4:Ce3+ nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc2O4:Ce3+ nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce4+ ions can be ruled out. The present highly dispersed CaSc2O4:Ce3+ nano-phosphors with efficient fluorescence are promising in the field of biological labeling, and the present low temperature combustion method is facile and convenient and can be applied as a universal process for preparing non-aggregate oxide nano-phosphors, especially those being sensitive to air at high temperature.  相似文献   

15.
Ce3+-doped Mn-Zn ferrite fibers were successfully prepared by the organic gel-thermal decomposition method from metal salts and citric acid. The composition, structure, and magnetic properties of these ferrite fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The results show that Mn0.2Zn0.8Fe2−x Ce x O4 (x = 0–0.04) fibers are featured with an average grain size of 11.6–12.7 nm, with diameters ranging between 1.0 to 3.5 μm and a high aspect ratio (length/diameter). The Ce3+ ion doping has not resulted in crystal structural changes of the Mn-Zn ferrite phase and all the as-prepared ferrite fibers have a simple spinel phase structure, although this influences the morphologies of Mn0.2Zn0.8Fe2−x Ce x O4 ferrite fibers possibly owing to the lattice distortion and internal-stress. Both the lattice constant and grain size increase slightly with the increase of the Ce3+ ion doping content. The soft magnetic properties of Mn-Zn ferrite fibers can be improved by a small amount of Ce3+ ion doping with an increase of the saturated magnetization and a decrease of the coercivity.  相似文献   

16.
The synergistic inhibition effect of rare earth cerium(IV) ion (Ce4+) and sodium oleate (SO) on the corrosion of cold rolled steel (CRS) in 3.0 M phosphoric acid (H3PO4) has been investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) methods. The results reveal that SO has a moderate inhibitive effect and its adsorption obeys Temkin adsorption isotherm. Ce4+ has a poor effect. However, incorporation of Ce4+ with SO improves the inhibition performance significantly, and exhibits synergistic inhibition effect. SO acts as a cathodic inhibitor, while SO/Ce4+ mixture acts as a mixed-type inhibitor.  相似文献   

17.
A series of thermal-stable Ce3+, Mn2+-codoped barium strontium lithium silicate (BSLS) phosphors was synthesized by a high-temperature solid-state reaction. The XRD patterns of this phosphor seem to be a new phase that has not been reported before. BSLS:Ce3+, Mn2+ showed two emission bands under 365 nm excitation: one observed at 421 nm was attributed to Ce3+ emission, and the other found in red region was assigned to Mn2+ emission through Ce3+-Mn2+ efficient energy transfer. The Mn2+ emission shifted red along with the replacement of barium by strontium, which was due to the change of crystal field. A composition-optimized phosphor, BSLS:0.10Ce3+, 0.05Mn2+ (Ba = 65), exhibited strong and broad red-emitting and supreme thermal stability. The results suggest that this phosphor is suitable as a red component for NUV LED or high pressure Hg vapor (HPMV) lamp.  相似文献   

18.
Ce3+-Eu2+-Dy3+-Eu3+-doped fluorosilicate glass ceramics containing orthorhombic CaCeOF3 nanocrystals were prepared by annealing the precursor glass above 640 °C, along with the reduction of Eu3+ → Eu2+. Under near ultraviolet excitation, the emission bands of Eu2+ or Dy3+ were enhanced by several ten or hundred times, owing to energy transfers from Ce3+ to Eu2+ or Dy3+. The glass and glass ceramics emitted warm white light deriving from the blue, yellow and red emission from Eu2+, Dy3+ and Eu3+. Tuning the annealing temperature, the Eu2+/Eu3+ ratio and the warm white Commission Internationale de I’Eclairage (CIE) coordinates can be adjusted. Thus, the present materials can be applied on warm white high power light-emitting-diodes for indoor illumination application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号