首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
首先通过溶剂热法制备Fe3O4纳米颗粒,再通过离子强度调控法制备磁性氧化石墨烯(Fe3O4/GO),最后用共沉淀法制得Fe3O4/GO/CeO2复合纳米材料,并用扫描电镜(SEM)、能量色散X射线光谱(EDX)、X射线衍射(XRD)等技术对其进行表征。结果表明:Fe3O4纳米颗粒与CeO2纳米颗粒均匀地分散在GO上。研究了Fe3O4/GO/CeO2复合纳米材料对亚甲基蓝染料的吸附性能,并考察了不同因素对吸附性能的影响。由于Fe3O4纳米颗粒有着磁性的性质,易回收分离,具有再生利用性能。吸附实验结果表明:Fe3O4/GO/CeO2复合纳米材料循环5次后对亚甲基蓝的吸附率仍在95%以上。因此,Fe  相似文献   

2.
实现高电磁屏蔽性能的同时降低反射是目前电磁屏蔽材料所追求的。采用一步水热法合成直径为30~40μm,厚度为70~200 nm的Fe3O4纳米片,利用红外光谱、X射线衍射仪、扫描电子显微镜表征发现结晶度良好。改变Fe3O4纳米片含量,喷涂制备的Fe3O4/MXene/WPU复合膜的反射值能低至4.3 dB,反射功率(R)从0.81降至0.63,透射功率(T)仅为10-3数量级。同样,采用水热法制备了直径为180~200 nm、分散性良好的Fe3O4纳米微球。同等Fe3O4含量下纵向对比发现,含Fe3O4纳米片的复合膜电磁屏蔽性能稍高于含Fe3O4纳米球的复合膜。  相似文献   

3.
首先合成氨基功能化Fe3O4(NH2—Fe3O4),并以NH2—Fe3O4为磁核,六水合硝酸锌(Zn(NO3)2·6H2O)为锌源,在表面活性剂聚乙二醇(PEG,PEG-400)辅助下通过水热法制备PEG修饰的ZnO(NH2—Fe3O4@PEG@ZnO)磁性复合材料。利用XRD、SEM、TEM、XPS、紫外-可见-近红外分光光度计、比表面吸附仪(BET)、振动样品磁强计(VSM)等对NH2—Fe3O4@PEG@ZnO复合材料组成、形貌、磁性能等进行表征。并进一步以罗丹明B(RhB)染料为模拟污染物,对NH2?Fe3O4@PEG@ZnO复合材料的光催化降解性能进行研究,采用单因素法探究Fe与Zn的原子比(n(Fe)∶n(Zn))、合成温度、表面活性剂种类及用量对NH2—Fe3O4@PEG@ZnO复合材料光催化降解性能的影响。结果表明,n(Fe)∶n(Zn)=1∶15、水热合成温度为180℃制备的NH2—Fe3O4@ZnO复合材料具有良好的光降解性能,0.0500 g NH2—Fe3O4@ZnO复合材料在紫外光照射20 min内对50 mL RhB(1.0×10?5 mol·L?1)溶液降解率为90.36%。而相同条件制备的NH2—Fe3O4@PEG@ZnO复合材料呈微球状,比表面积为11.43 m2·g?1,禁带宽度为2.51 eV,对RhB的光催化降解率可提高至99.36%,循环使用10次后,其对RhB的光催化降解率仍可达96.48%,PEG-400对NH2—Fe3O4@ZnO复合材料的光催化活性具有较大的协同效应。   相似文献   

4.
采用共沉淀法成功制备出具有超顺磁性的纳米Fe3O4, 并将Fe3O4与SrFe12O19复合制成复合吸波材料Fe3O4-SrFe12O19, 利用X射线衍射仪(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(PNA)对产物的物相、显微结构、磁性能和吸波性能进行了表征与分析。结果表明, 当Fe3O4与SrFe12O19质量比为1∶0.3时, Fe3O4-SrFe12O19饱和磁化强度为11.1 emu·g-1, 矫顽力0.86 Oe, 剩余磁化强度0.08 emu·g-1, 其吸波性能最佳, 最大吸收峰值为-17.7 dB,-5 dB频宽为1.3 GHz, 较Fe3O4和 SrFe12O19的最大吸收峰值分别提高247%和185%, 频带分别拓宽1.12 GHz和0.40 GHz。  相似文献   

5.
Fe2O3/EPDM新型吸油材料的制备及其吸油性   总被引:2,自引:0,他引:2  
以三元乙丙橡胶(EPDM)作为基体, Fe2O3和焙烧过的Fe2O3粉末分别作为填料, 利用熔融共混的方法, 制备出一种新型吸油复合材料, 这类材料可以直接漂浮于含油废水表面使用。研究了填料和交联剂的用量对材料吸油率的影响。结果表明: 交联剂过氧化二异丙苯(DCP)为3wt%, Fe2O3为25wt%时, Fe2O3/EPDM吸油率达到最大; DCP为2wt%, Fe2O3(焙烧)为30wt%时, Fe2O3(焙烧)/EPDM吸油率达到最大。选择2组样品中吸油率最高的样品, 对比它们对机油的吸油速率。实验表明, Fe2O3(焙烧)/EPDM的吸油速率大于Fe2O3/EPDM的吸油速率。Fe2O3/EPDM的吸油率比交联EPDM的吸油率提高了227%; Fe2O3(焙烧)/EPDM的吸油率比Fe2O3/EPDM的吸油率最大可提高64%。分析认为, Fe2O3粒子破坏掉一部分高分子链段间的作用力, 并对网络起支撑作用, 为油分子提供了更多的进入通道和空间, 故吸油性得到提高。Fe2O3(焙烧)/EPDM的吸油特性要优于Fe2O3/EPDM。   相似文献   

6.
以氧化石墨烯(GO)、纳米Fe3O4、钛酸四丁酯(TBOT)为原料,合成了磁性介孔TiO2/GO(Fe3O4@TiO2/GO)复合材料,用其处理浓度为10 mg·L-1的含U(Ⅵ)废水。研究了Fe3O4@TiO2/GO复合材料中GO含量、溶液初始pH值、Fe3O4@TiO2/GO复合材料投加量、反应时间、U(Ⅵ)初始浓度及共存离子对U(Ⅵ)吸附的影响。结果表明:在pH值为6、GO质量分数为60wt%、Fe3O4@TiO2/GO复合材料投加量为10 mg的条件下,Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附效果最佳,较同等条件下磁性介孔Fe3O4@TiO2复合材料和GO的吸附量分别高了10.99 mg·g-1和1.91 mg·g-1。Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附180 min即达到平衡,准二级动力学模型和Freundlich吸附等温模型能很好地描述其吸附过程。解吸实验表明,经5次吸附-解吸后,U(Ⅵ)的吸附率仍高达90.86%,说明Fe3O4@TiO2/GO复合材料具有较高的循环利用性能。   相似文献   

7.
在5% H2+95% N2气氛下,还原CoFe2O4纳米粒子制备了CoFe2O4-Co3Fe7纳米粒子;以焙烧黄麻纤维得到的多孔碳纤维为碳源用水热法将CoFe2O4纳米粒子负载到多孔碳中,制备出CoFe2O4/多孔碳。使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱仪、同步热分析仪等手段对材料进行表征,并使用矢量网络分析仪测量了复合材料的电磁参数和微波吸收性能。结果表明,CoFe2O4-Co3Fe7纳米粒子和CoFe2O4/多孔碳的微波吸收性能明显优于CoFe2O4纳米粒子。CoFe2O4-Co3Fe7纳米粒子的有效频宽(反射损耗<-10 dB的频率宽度)可达4.8 GHz。CoFe2O4/多孔碳的有效频宽可达6 GHz,覆盖了整个Ku波段(12~18 GHz)。这些材料优异的微波吸收性能,可归因于合适的介电常数、大的介电损耗、多孔结构以及介电损耗和磁损耗的协同作用。  相似文献   

8.
采用溶胶-凝胶分散和热压烧结制备了短切碳纤维(CFs)/Fe3Al-Al2O3复合材料。分别通过电化学镀Cu和化学气相沉积SiC对CFs表面修饰和改性,研究了Cu镀层和SiC涂层对CFs/Fe3Al-Al2O3复合材料显微组织、相组成、力学性能及断裂行为的影响。结果表明,未修饰的CFs在Fe3Al-Al2O3基体中受到严重侵蚀,CFs/Fe3Al-Al2O3复合材料致密度低,抗弯强度仅为239.0 MPa,与Fe3Al-Al2O3强度相当;表面镀Cu可有效保护CFs不被侵蚀,同时提高了CFs/Fe3Al-Al2O3复合材料的烧结致密性和界面结合强度,从而明显提高了复合材料的断裂强度,但断裂过程中纤维拔出较短;CFs表面沉积SiC的CFs/Fe3Al-Al2O3复合材料组织均匀致密,表面涂层完整,且与纤维及基体之间结合力相当,断裂过程中,涂层既可随纤维一起拔出基体,也可与CFs分离而留在基体之中,SiC涂层与纤维及基体之间的弱相互作用很大程度上促进了纤维脱黏和拔出,从而促进CFs/Fe3Al-Al2O3复合材料韧化所需的渐进破坏机制。   相似文献   

9.
Fe3O4/ 聚吡咯复合材料的制备及表征   总被引:22,自引:3,他引:19       下载免费PDF全文
以化学沉淀法制备Fe3O4 纳米粒子, 采用乙醇对Fe3O4 纳米粒子表面进行处理, 使其表面有机化, 然后通过乳液原位复合制备Fe3O4 / 聚吡咯复合材料。利用TEM, XPS, 四探针测试仪和震荡磁力计对其进行表征和检测。结果表明: 经醇处理的Fe3O4 纳米粒子的分散性得到明显改善, Fe3O4 纳米粒子被包覆在聚吡咯层内, 包覆层厚度为10 nm 左右, 复合材料具有优良的电性能和磁性能, 电导率e= 7. 69 s/ cm~13. 6 s/ cm, 饱和磁强度Ms= 12. 06 emu/ g~24. 38 emu/ g, 矫顽力Hc= 11 Oe~41 Oe。其环境稳定性明显优于纯聚吡咯。   相似文献   

10.
以N-甲基咪唑、溴代正丁烷、磷钨酸为原料制备了1-丁基-3-甲基咪唑磷钨酸离子液体[BMIM]3PW12O40,将其通过超声浸渍法负载于氨基化Fe3O4(Fe3O4-NH2),得到枣糕型结构的[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料,通过FTIR、XRD、XPS、TEM、振动样品磁强计(VSM)、SEM等对其组成、形貌等进行表征。以[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料为催化剂,以H2O2为氧化剂,催化氧化以二苯并噻吩为硫源的正辛烷模拟油样,通过单因素法分别考察了超声时间、H2O2用量、反应温度和催化剂用量等因素对脱硫效果的影响,并初步探讨了[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料催化脱硫机制。结果表明:0.5 g/L[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料超声辅助催化氧化浓度为500 mg/g模拟油样,在323 K下H2O2与二苯并噻吩的摩尔比n(O):n(S)为8:1经超声10 min时,催化脱硫率达到最佳,为88.13%;重复使用5次后,[BMIM]3PW12O40/Fe3O4-NH2磁性复合材料对模拟油样的催化降解率仅下降了2.51%。说明该材料具有良好的催化脱硫性能,并可重复使用。催化机制初步研究表明,活性中心可能为杂多酸阴离子、Fe3O4-NH2和离子液体分别起到载体和协同增容作用。   相似文献   

11.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

12.
为解决磁性纳米Fe3O4易被腐蚀、团聚等问题,可对其进行功能化修饰。在超声波辐照下首先制备磁性纳米Fe3O4颗粒,然后选用2,5-二氨基苯磺酸(SP)和间苯二胺(mPD)单体为引入剂进行功能化修饰,制备得到富含氨基、磺酸基和亚氨基活性官能团的金属基复合材料Fe3O4-mPD/SP(95∶5),并采用FTIR、TEM、XRD等手段对其进行表征,证实了超声波辐照法制得的磁性纳米复合材料具有稳定性好、反应活性高、粒径小和比表面积更大等特点。同时考察其对Pb(II)的吸附性能,结果表明:mPD和SP摩尔比、溶液pH值、竞争性阳离子种类和反应温度等因素均会影响吸附效果;等温吸附过程符合Freundlich模型,吉布斯自由能?G0<0,吸附是一个自发过程;Pb(II)的吸附行为符合准二级动力学,速率常数k2=3.61×10-3 g·mg-1·min-1,平衡吸附量qe=63.297 mg·g  相似文献   

13.
通过碳辅助法和溶胶-凝胶法制备了具有可见光下光催化制氢性能的TiO2/Co3O4复合纳米颗粒。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)和高分辨率透射电子显微镜(HRTEM), 以及紫外可见分光光度计表征了复合纳米颗粒的晶体结构、微观形貌和紫外-可见光谱吸收能力。结果表明, 制备的复合纳米颗粒具有良好的晶型、结构以及紫外可见光吸收能力。实验测试了TiO2/Co3O4复合纳米颗粒在模拟太阳光下的光催化制氢性能, 并研究了其光催化制氢的可重复利用性。结果表明, 在模拟太阳光照射下, 该复合纳米颗粒催化纯水产生氢气的速率约为8.25 μmol/(g·h), 且该复合纳米颗粒具有良好的可重复利用性。  相似文献   

14.
用共沉淀法制备了具有超顺磁性Fe3O4-MWCNTs(多壁碳纳米管)复合粒子,加入环氧树脂(EP)中,在0.6 T的弱定磁场下固化成型。采用TEM研究其定向程度及分散性,并进行动态热机械分析、差热分析和导热率测试。结果表明,MWCNTs表面包覆了磁性Fe3O4纳米粒子,Fe3O4-MWCNTs复合物按照首尾衔接的方式沿着磁场方向定向排列。Fe3O4-MWCNTs/EP纳米复合材料表现出明显的各向异性,垂直于Fe3O4-MWCNTs轴向导热率低于平行方向的导热率,Fe3O4-MWCNTs的加入对于平行方向的导热率影响不大。Fe3O4-MWCNTs的加入使环氧树脂的储能模量变小,损耗模量变大,损耗因子均大于纯环氧树脂,表现出良好的阻尼性能。当Fe3O4-MWCNTs与EP质量比为0.3%时,损耗因子在20 ℃的温域内大于0.7,最高值达到1.16。  相似文献   

15.
在碱性条件下,以共沉淀法合成Fe3O4,再以正硅酸乙酯和二乙烯三胺为原料,制备出Fe3O4复合材料(Fe3O4-SiO2-NH2)。采用FT-IR、VSM和SEM对其结构进行表征,并研究了复合材料对Cd2+的吸附性能。实验结果表明,在T=55℃、t=60 min、Cd2+溶液的初始浓度为100 mg·L-1、Fe3O4-SiO2-NH2的添加量为0.1 g时,该材料对Cd2+的吸附容量为71.4 mg·g-1。其吸附动力学行为更符合准二级动力学,热力学更适合用Langmuir等温吸附模型描述。Fe3O4-SiO2-NH2吸附Cd2+后洗脱再生,经过5次循环使用后,其对Cd2+的去除率仍然大于70%。   相似文献   

16.
具有磁性的非均相催化剂价格低廉、低污染、高能效、容易从溶液中分离出来。经过水热合成法合成的Fe3O4/MnO2磁性复合氧化物催化剂在活化过一硫酸盐(2KHSO5·KHSO4·K2SO4)产生硫酸根自由基(SO4-)降解水中有机污染物表现出了优良的性能。把不同质量的磁性Fe3O4微球与线状的MnO2负载到一起,合成三种Fe3O4:MnO2质量比分别为1:3、2:3、1:1的Fe3O4/MnO2催化剂,经过XRD、SEM和TEM表征,表明这两种金属氧化物负载到一起。对比不同Fe3O4:MnO2质量比的Fe3O4/MnO2磁性复合氧化物催化剂活化2KHSO5·KHSO4·K2SO4的活性,发现Fe3O4/MnO2(2:3)催化剂催化活性最高。通过考察不同因素对Fe3O4/MnO2(2:3)催化活性的影响得出,水中罗丹明B(Rh B)降解的最佳条件为10 mg/L Rh B、0.4 g/L Fe3O4/MnO2催化剂、0.3 g/L 2KHSO5·KHSO4·K2SO4、pH=8。Fe3O4/MnO2(2:3)磁性复合氧化物催化剂经过3次循环利用后,催化活性没有明显下降。SO4-在降解水中Rh B起主要作用。   相似文献   

17.
采用水热法制得粒径为150~300 nm、分散性良好的Fe3O4磁性内核颗粒, 经APTES对Fe3O4进行氨基化修饰后, 用NaBH4原位还原H2PtCl6制得Fe3O4@Pt核壳结构的DMFC阳极催化剂, 对其进行TEM、XRD、XPS、EDS和催化活性及稳定性表征, 结果表明: 制得的Fe3O4@Pt颗粒表面主要由Pt组成, 形成了完整包覆一层Pt的Fe3O4@Pt粒子, 颗粒粒径为200~300 nm, Fe与Pt的原子比近似为3:1; Fe3O4@Pt具有良好的稳定性, 在循环100圈后, Fe3O4@Pt修饰的玻碳电极在新配制的0.5 mol/L H2SO4+1 mol/L CH3OH溶液中循环第101圈的峰电流密度是第一圈的94.51%; 纯Pt的峰电流密度仅为Fe3O4@Pt的90.73%, Fe3O4和Pt之间存在电荷传递, 从而提高了Fe3O4@Pt的催化活性。因此Fe3O4@Pt有望取代Pt作为DMFC的阳极催化剂。  相似文献   

18.
用固相法制备Fe2W型铁氧体BaFe2-x2+CoxFe163+O27(x=0.0~0.8),采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FT-IR)和振动样品磁强计(PPMS-VSM)等手段分析其物相组成、结构和磁性并使用Reitveld拟合分析晶体结构,研究了Co2+部分取代Fe2+的Fe2W型铁氧体的微观结构和磁性。结果表明:所有样品都是纯相铁氧体BaFe2-x2+CoxFe163+O27。样品具有W铁氧体结构,晶粒呈良好的六角形结构且分布均匀。用 Co取代能明显提高Fe2W型铁氧体300 K的饱和磁化强度(Ms)。  相似文献   

19.
以核黄素为药物模型,采用原位共沉淀法制备了一种载药Fe3O4/壳聚糖复合微球。傅里叶变换红外光谱(FTIR)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)和振动磁强计(VSM)表征了复合微球的化学组成、外观形貌以及磁性能。结果表明,制备的载药Fe3O4/壳聚糖复合微球平均粒径约为40 nm且粒径均匀,平均磁响应时间为52 s,饱和磁化强度为3.313 2 A·m2·kg-1。采用紫外/可见(UV/Vis)分光光度计考察了复合微球的药物包封率、载药量(质量分数),并对微球在模拟胃液、模拟肠液、生理盐水、葡萄糖溶液和二次蒸馏水中的释药行为进行跟踪。结果表明,微球的载药量可达9.9%,药物包封率为70.8%,实验条件下在模拟肠液中具有显著的缓释效果,释放10 h药物累积释放16.06%,60 h达52.18%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号